



Abstract

Studying the geometry of the total space E of a vector  bundle  
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 from a geometric point of view, especially when E=TM or E=T* M has ganned, after years of resurch, theoretical but also practical meaning in the Relativistic Mechanics,General Theory of Relativity,Hamiltonian Mechanics,  thanks to the introduction of the essential notion of nonlinear connection or E.

By doing this, a classification of the theory of the geometrical objects and also efficient calculus algoritms has ben obtained.
Starting from the fundamental monographies about bundle theory and about the theory of Differential Topology, the Romanian specialists in Differential Geometry , lead by Acad. Radu Miron (Braşov – Iaşi, 1980)  – initially supported by a small number of founder members like: M. Anastasiei, V. Cruceanu, V. Oproiu (Iaşi); Gh.Pitiş,Gh. Atanasiu, Gh. Munteanu, E. Stoica (Braşov), P. Stavre (Craiova)  - engaged in a sustained resurch under the flag of “The National Seminar of Finsler-Lagrange”.
This lead to a Romanian strategy of studying the geometry of E.

A lot of foreign scientists from Japan ,Hungary, Canada, SUA,  , - among which M. Matsumoto, L. Tamassy, S. Chern, Z. Shen, P.L. Antonelli adopted this strategy.
Our days, this strategy has ganned international recognition, an impressive number of works and PHD’s appeared in this field.

More over, Acad. R. Miron introduced and developed the geometry of the Lagrange spaces and the geometry of Hamiltonian spaces as a new theory, imposing new theoretical and practical directions of research.
In this framework, P. Stavre developed his own new theory, the Theory of Pseudo-Riemannian  Conjugations on E, E=TM or E=Tx M, which led to the possibility of natural clasification of the Einstein and Einstein-Lagrange models, using Lagrange spaces generalized in  R. Miron’s way.
More over, starting from the necessity of using almost sympletic and sympletic structures in the hamiltonian mechanics, he extend The Theory of Conjugation to this structures.
Starting from this and using the results obtained by Romanian specialists in Differential Geometry, the author of this thesis, under the guidance of Prof. Univ. Dr. Emeritus P.Stavre, extends the difficult theory of the almost sympletic conjugation to the case of the vector bundle.
For some practical results, we  focused our attention on the model  
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 of a generalized Lagrange space.

The theoretical results, expressed in a general way, had ganned essence in this way.
The statements mentioned above represent the content of the thesis.

Because we start from almost sympletic conjugated structures, it was necessary for us to start with the general structure
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 and with studying E from a geometric point of view, then we had to consider
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 We justify, on these way the first two chapters of general preparation. The first two chapters were based on the Acad. Radu Miron , M. Anastasiei (76,77) and P. Stavre (121) monographies.

Now, we present an over-view of the results that we consider to be semnificative.
Cap. I-II are dedicated to the preparation of the basis for the resurches from cap. VII-IX.

1) For accomplished this goal, we tried to present The General Theory of the Vector Bundle in such a way in which the distinction between the Dimensional Finite Case and the case in which the type fiber is a Banach space to be perfectlly clear.

2) The theory is presented in such a way , in which to engolf, in a unitary manner, the theory of the tangent bundle and cotangent bundle with the corresponding structures, too.
3) We try to highlight the two aspects:
a) the definite structures

b) the induced structures from the basis to the total space of the vector bundle 
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, focusing on the rise of the differentiable partition of the unit.
4) The construction of the tangent bundle was presented algoritmically, in a way in which to be perfectlly clear what conditions are needed to obtain the general vector bundle, T E, especially for obtaining the necessary atlases in TTE and in T TxE.
5) Some aspects, of a topological nature, were presented especially when we talk about the existence of the 
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 -riemannian structures, respectivelly pseudo-riemannian  structures (necessarelly in the General Theory of Relativity)
6) For studying the total space E of the bundle from a geometric point of view, a special role has the notion of nonlinear connection, N, in other words fixing an horizontal distribution H 
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, suplementary to the vertical distribution  
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 respectivelly 
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 (Whitney sum).
The role of N end the corresponding theory were elaborated in detailes by the resurchers of Acad. R. Miron and Romanian specialists in Geometry.
In this framework, for E=TM, a geometric way of introduction N is presented too, thanks to a recent study elaborated by prof.Stavre.
We tried, in this way, to combine new resurches with the less recent ones.

We always camed back with exemples for the tangent bundle and for the cotangent bundle (necessary in Hamiltonian Mechanics)

7) A special role in studying the total space E from a geometric point of view has special class of linear connections D on E (which exist, globally, under the rules of the given structures), namelly those linear connections that have the geometrical property of conserving the horizontal and vertical distribution, during parallel transport.

This connections are named by R. Miron  d-linear connections. The importance of this connections lies in the  geometrical property presented above, especially in those aplications  where the study of a phenomena is made through decomposition after two suplementary directions and which decomposed, must conserve themselves during parallel transport, for the theory to have geometric and phisyc character, to be consistent.

This is the basis for the elaboration of   Miron-Anastasiei studies and also for the elaboration of many recent works of Romanian and foreign resurchers (mentioned in the bibliograhy).

Having D, we obtain rules of h- derivation, Dh and of v-derivation, for tensorial fields of the type 
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 as an algorytmic basis of calculus, mentaining the geometric character. In this respect, the monographies of R. Miron are fundamental and extend to Osc
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So the accent put on this cases  is perfectlly justified.

The specialisation of a linear connection D on E, through d-linear connection is not just a simple particulisation- as it might seen- but it created a separate discipline with applications to the modern domeins of quantic phisics, Lagrange spaces, Hamiltonian spaces, General Theory of Relativity and, more recent, the G  conjugation theory. More over, this specialisation will be the basis for the elaboration of the ω-conjugation on the total space 
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Presenting the material from this chapter under this form required enourmous documentary effort, starting with studies of Differrential Topology and continuing with more recent theories from the field of vector bundle  theory.
Cap. III. In this chapter, by using the structure E=TM, on which a nonlinear connection, N, has been fixed, the notion of almost complex structure, F, appeares naturelly
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where xh is the horizontal lift  of 
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The structure 
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  is named almost complex structure dual to the natural almost complex structure F.

We obtain propositions (3)-(6),  where 
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.We study the exterior differential 
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 and we obtain propositions (7)-(11).

Without particularising a linear connection D, the condition DF=0 is given, and we obtain propositions (4)-(9) §2.2.. An important result obtain by us is given by
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This result alows a dual writting of Ricci’s identities
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where
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Considering D a d-linear connection, that is normal, the result obtained  above lead toimportant results.

Noting 
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 a theory of the natural infinitezimal automorphisms is stated 
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. We obtain propositions (12) (13) (§2.2) and the structure ecuations, in the adapted local bases:
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We discuss  the cases when the horizontal distribution is integrable, respectivelly

 when F is a complex structure.

Let us consider a pseudo-riemannian structure (E,G) with the corresponding discussion of existence (Steenrood) and with the association of a pseudo-riemannian indicator 
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Let us consider  a relative discussion on two distribusions 
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 which are ortogonals 
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We prove that, unlike the riemannian case where 
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 in the pseudo-riemannian case there are not always suplementary, so we could have   
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 where 
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Fixing 
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Taking E=TM, we define a structure 
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 almost hermitian, if 
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 for given 
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Considering 
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 we obtain propositions (3)-(10). We have to take into account that 
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In cap. IV we present a classification of the notions of parallel distribution relative to a linear connections, focusing on the difference betwen the paralelism of the vectors and the paralelism of the directions, particulary when the direction is izotrope 
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We then  present d-linear connections theory on E=TM, under an invariant form, useful in further developments. We obtain the forms given by the propositions (4) (7) (8) (9) (9’) (10) (16),  which-written in the adapted base-lead to known  relations, which characterise d-linear connections and the normal d-linear connections.

Proposition( 10)
Let us consider (E=TM,D(F)) and  D an  N-linear-connection.Then we have:

(73)
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The invariant identities, from Proposition (16) , under this form, are essential for further developments.

Proposition(16) Let us take (E,G) a pseudo-riemennian structure and 
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In the end of this paragraph, we breafelly present the almost hermitian model 
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 of a generalised Lagrange space elaborated by R. Miron. It will be further used for the case of the natural almost symplectic ω- conjugations.

Cap. V begins  a new theory inspecialised research studies, namelly the theory of almost symplectic conjugations on the total space E, of a vector bundle
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.This new theory is based on the way of defining a nonlinear connection 
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 , with the help of an almost symplectic structure  ω-on N, with the condition 
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 We have the decomposition
[image: image65.wmf]w

w

w

v

h

+

=


Using 
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and applying the ω-conjugation theory on the basis M elaborated by prof.Stavre., we obtain a theory of ω-conjugation on E.

Definition (1).  Let us consider an almost sympletic structure 
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      and analoguosly 
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In Proposition (1) and Proposition (2)  we prove that in general we have (6) (7) (11) (12).
Proposition (1). 1 In general case we have

(6)
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Proposition (2). 2 Let us consider 
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Let us consider 
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If, during the parallel transport of  
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Starting from here, we obtain:
Proposition3.  Let us consider
[image: image109.wmf])

,

,

(

M

TM

E

p

=
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Proposition ( 8). Let us consider  
[image: image133.wmf])

,

,

(

M

TM

E

p

=

=

x

, 
[image: image134.wmf])

,

(

w

E

, 
[image: image135.wmf])

(

w

=

N

N

 and 
[image: image136.wmf])

1

(

D

, 
[image: image137.wmf])

2

(

D

 two normal connections on E=TM. Then we can not have

(28)


[image: image138.wmf]0

)

1

(

=

w

v

D

h

X

;  
[image: image139.wmf]0

)

1

(

=

w

h

D

v

X


(29)


[image: image140.wmf]0

)

2

(

=

w

v

D

h

X

;  
[image: image141.wmf]0

)

2

(

=

w

h

D

v

X

,
 meaning 
[image: image142.wmf])

1

(

D

, 
[image: image143.wmf])

2

(

D

can not be semi-compatible with ω.
A series of cases in which 
[image: image144.wmf])

1

(

)

1

(

D

, 
[image: image145.wmf])

2

(

)

1

(

D

can not have the property of ω- conjugation preserved during parallel transport, are given. 
We obtain the following important result:
Proposition. (12) Let us consider 
[image: image146.wmf])

,

,

(

M

TM

E

p

=

=

x

, 
[image: image147.wmf])

,

(

w

E

, 
[image: image148.wmf])

(

w

=

N

N

 and 
[image: image149.wmf])

1

(

D

, 
[image: image150.wmf])

2

(

D

 two normal connections on E=TM, ω-conjugated. If

(39)


[image: image151.wmf])

,

(

)

,

(

)

2

(

)

1

(

hZ

hX

T

h

hZ

hX

T

h

=


(40)


[image: image152.wmf])

,

(

)

,

(

)

2

(

)

1

(

vZ

vX

T

v

vZ

vX

T

v

=

, 
[image: image153.wmf])

(

,

TM

E

Z

X

=

Î

"

X


then 
[image: image154.wmf])

2

(

D

 will be well-determined by  
[image: image155.wmf])

1

(

D

  and conversely.

In §3 we make a presentation in the local base adapted to 
[image: image156.wmf]w

N

N

=


We have:
Definition. 1 Generally, for an almost sympletic structure (E, ω), two linear conections 
[image: image157.wmf])

1

(

D

, 
[image: image158.wmf])

2

(

D

 on E will be called absolutelly  ω-conjugated, if:
(20)


[image: image159.wmf])

(

,

0

)

12

(

E

X

D

X

X

Î

"

=

w

.

We say that 
[image: image160.wmf])

12

(

D

 is ω-compatible and we obtain:
Proposition  (3)  Let us consider 
[image: image161.wmf])

,

,

(

M

TM

E

p

=

=

x

, 
[image: image162.wmf])

,

(

w

E

, 
[image: image163.wmf])

(

w

=

N

N

 Then two d-linear connections 
[image: image164.wmf])

1

(

D

, 
[image: image165.wmf])

2

(

D

 on E will be absolutely ω- conjugated if and only if we have:
(21')


[image: image166.wmf]is

k

sr

r

ik

r

ik

D

w

w

+

G

=

G

)

2

(

)

2

(

)

1

(


(22')


[image: image167.wmf]s

n

i

n

k

r

n

s

n

r

n

k

i

n

r

n

k

i

n

D

+

+

+

+

+

+

+

+

w

w

+

G

=

G

)

2

(

)

2

(

)

1

(


(23')


[image: image168.wmf]is

k

n

sr

r

k

n

i

r

k

n

i

D

w

w

+

G

=

G

+

+

+

)

2

(

)

2

(

)

1

(


(24')


[image: image169.wmf]s

n

i

n

k

n

r

n

s

n

r

n

k

n

i

n

r

n

k

n

i

n

D

+

+

+

+

+

+

+

+

+

+

+

w

w

+

G

=

G

)

2

(

)

2

(

)

1

(


Proposition( 4)  Let us consider  
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Some of this results were published in [61] and the rest was presented as articles in Bucharest(DGDS-october 2007), Iassy(International Conference on Differential Geometry september 2007).
The  study in the general case 
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In cap. VII we introduce the notion of almost sympletic  structure ω and almost hermitian structure ω through 
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We obtain the invariants of  the classes 
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The invariant (2) is more complicated to be proved .For this it was necessary  to obtain the relation (4)
.We obtain (5) and from this we get (2)
 

(4)
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Passing to the curvature invariants for 
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 , we encounter Schouten –Thomas type  invariants, but corelated with the invariant, mentioned above.

Then we study the special classes  
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 which satisfied the ω-Codazzi  conditions, or which are T-connections. Their link with the condition that ω to be integrable is being studied. We obtain a series of specific results, never encountered in the specialised research studies. We say that because they are based on the general ω-conjugated theory elaborated by prof. Stavre  in the first monography of this type(121).
Cap VIII. Because the above theory is very general (ω is general), it is obvious  that in the Hamiltonian Theory we encounter more particular ω sympletic structures. Starting from this remark, we consider natural (special) cases of almost sympletic ω-structures.

In this case, the ω-conjugated theory remains only as a principle, but it is expected to encounter a series of specific results.

On the suggestion of my mentor  prof. Stavre. , I tried to use the almost hermitian model 
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of a generalized Lagrange space 
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elaborated by Acad. R. Miron, because we can find there an almost sympletic structure defined by 
G (the N-lift on  TM).

This idea forced us to consider first an almost sympletic structure ω, defined by G, almost hermitian, in general.

Let us consider G a pseudo- riemannian  metric on E=TM  and  F the natural almost complex structure. We usually define:
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 .It is clear that ω is nondegenerate. If we add the condition 
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 then  
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 meaning G is natural almost hermitian. But we considered G a general metric. In this case, can we have an almost hermitian G?
Let us consider 
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  This means that it exists. So ω 

is a 2 differential nondegenerate form ,that is an natural almost sympletic structure, associated  to  
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The theory is changed completelly, because now we consider
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and so 
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 in R. Miron’s way. 
We  no longer have 
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 We have new relations, expressed with the help of  F, G, which will be necessary.

We first state the relation:
(1)
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for the tensor of Nijenhuis regardlles of what linear connection D will be on E=TM.

In the case of a D(F) connection on E=TM, we have

(2)
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and if D is a normal d-linear connection, we will have (2) with T, decomposed in the 6 d- tensorial components. From  the general relation

(3)
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 it results

(4)
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end  so it remains true for any normal d-linear connection.

Returning to the model 
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 in the local base adapted to 
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(4’)
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From the geometric definition of ω-conjugation of two normal d-linear connections, now we have only:

(6)
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(7) 
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namelly

(8)
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where
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because  
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are normal d-linear connections.
From 6,7, using the Ricci’s identities formulated in cap IV,we obtain  esential curvature invariants:
(11)
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Using the general relation

(14)
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we come to the conclusion that, generally, ω is not integrable and so ω can not be a sympletic structure.

We discuse the cases when:

1) D is a normal d-linear connection

2) 
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3) We obtain a classification of normal d-connections which have the property of mixed  paralellism and conservation of one dimensional distribution, ω- conjugated.
4) We prove that any normal d- connection D , h- v. simetric, ω- conjugated with 
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, and so it must be ω- compatible. In this way, we gave an interpretation in the way of ω-conjugation  for Miron-Anastasiei  theorems, relative at
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5) A series of generalisations are stated. So, if 
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 is the Levi-Civita connection of G then we will have:
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and so 
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  is ω-compatible if and only if we have a D(F)-connection, or if and only if  
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 is a Kählerian structure, because from (1) it results that F is a complex structure, and from (14) it results that ω is simpletic.
6) A special result is that when  
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 and ω natural , when the ω-conjugation  theory is equivalent with the G conjugation theory ,elaborated by prof. Stavre(121) so the classification of  the Einstein models can be obtain in  the sense of ω- conjugation.
7)A series of observations in relation with the change of the structure 
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 is given.
In this way, once again, the importance of the almost hermitian model 
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of a generalized Lagrange space, has been evidentialized.

Using this path, of natural ω- conjugation, we obtain a known result (V. Oproiu).If  H2n  is the almost hermitian model of Lagrange space, then ω will be sympletic.
The problem of changing standards  will be treated in the future works, as an interpretation to different metric like Miron -Tavagol, Antonnelli, Synge.
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