
Resumé of the Ph.D Thesis

”Nonlinear elliptic equations and applications”,

by Ionică Andrei

In this thesis we are concerned with variational problems with p(x) - Laplace type operator
and hemivariational inequalities. All the problems studied here are containing nonlinearities and
we are concerned with the existence of solutions (sometimes nonexistence, sometimes uniqueness
or multiplicity).

This paper is organized in nine chapter. Chapter 1, was reserved to the Introduction. In
Chapter 2 we present some history notes, some basic results on the spaces Lp(x)(Ω) and W 1,p(x)(Ω)
and some significant recent results.

Chapter 3 is based on the paper ”Existence theorems for some classes of boundary value prob-
lems involving the p(x)-Laplacian ” published in ”Nonlinear Analysis: Modelling and Control”.
In the first section we consider the following problem

−∆p(x)u = λf(x, u), in Ω ,
u = 0, on ∂Ω ,

0 < λ ≤ a ,
(1)

where Ω is a bounded domain in RN , a > 0 is a given constant and f satisfies the following
conditions:
(F1) f is a Carathéodory function, i.e., measurable in Ω and continuous in u ∈ R, with f(x, 0) 6=
0 on a subset of Ω of positive measure;

(F2) | f(x, u) |≤ C1 +C2 | u |q(x)−1, for a.e. x ∈ Ω and all u ∈ R, with constants C1 ≥ 0, C2 ≥ 0
and 1 < p(x) ≤ q(x) < p?(x), where

p?(x) =


Np(x)

N − p(x)
, if p(x) < N,

+∞, if p(x) ≥ N ;

(F3) there are constants b1 ≥ 0, b2 ≥ 0, 1 ≤ γ < p(x) < ν such that, for a.e. x ∈ Ω and every
u ∈ R,

f(x, u)u− ν

∫ u

0

f(s, τ)dτ ≥ −b1 − b2 | u |γ .

We prove that if the function f : Ω × R → R satisfies conditions (F1)-(F3) and there exists a
function β ∈ C1(R, R) such that, for some constants 0 < ρ < r, σ > 0, the following properties
hold:
(β1) β(0) = β(r) = 0;

(β2) ρσ+1 ≥ q(x)a2
||u||q+

||u||q(x) and
σ + 1

q(x)
β(ρ) = a1;

(β3) lim
|t|→∞

β(t) = +∞;
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(β4) β′(t) < 0 if and only if t < 0 or ρ < t < r,
then, for each a > 0, the following alternative holds:
either

(i) a > 0 is an eigenvalue in problem (1) with a corresponding eigenfunction u ∈ W
1,p(x)
0 (Ω)

located by

α ≤ −
∫

Ω

∫ u(x)

0

f(x, t)dtdx +
1

ap(x)
‖u‖p(x) ≤ a1 + α

or
(ii) one can find a positive number s with

ρ < s < r, (2)

which determines an eigensolution (u, λ) ∈ W
1,p(x)
0 (Ω)× (0, a] of the problem (1) by the relations

‖u‖ = s−σ/q(x)(−β′(s))1/q(x), (3)

λ−1 = a−1 + s(q(x)+σp(x))/q(x)(−β′(s))(q(x)−p(x))/q(x), (4)

α ≤ sq(x)+1

q(x)
‖u‖q(x) +

σ + 1

q(x)
β(s)−

∫
Ω

∫ u(x)

0

f(x, t)dtdx +
1

ap(x)
‖u‖p(x) ≤ a1 + α. (5)

In the second section of this chapter we consider problem: −∆p(x)u = λ | u |p(x)−2 u+ | u |q(x)−2 u, in Ω ,
u = 0, on ∂Ω ,
u 6≡ 0, in Ω .

(6)

The main result of this section is if

λ < λ1(−∆p(x)) := inf

{∫
Ω

| ∇u |p(x); u ∈ W
1,p(x)
0 (Ω) , u 6= 0 , ‖u‖Lp(x) = 1

}
and 1 < p(x) < q(x) < p?(x), then the problem (8) has a weak solution.

In Chapter 4 we study the existence and multiplicity of solutions of the boundary value
problem {

−div(a(|∇u|p(x))|∇u|p(x)−2∇u) = f(u) in Ω,
u = 0 on ∂Ω,

(7)

where Ω is a bounded domain in RN with smooth boundary ∂Ω. We consider that f and a
satisfies the following conditions:

(F1) f ∈ C(R, R).

Set
C+(Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.
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For h ∈ C+(Ω), let
h− = ess inf

x∈Ω
h(x), h+ = ess sup

x∈Ω
h(x).

(F2) There exist nonnegative constants a1, a2 such that

|f(t)| ≤ a1 + a2|t|s, t ∈ R.

where p ∈ C+(Ω), s + 1 < Np(x)
N−p(x)

if N > p(x), and 0 ≤ s < ∞ if N ≤ p(x).

(F3) There exist θ ∈ (0, 1
p+ ) and t0 ≥ 0 such that for |t| ≥ t0

θtf(t) ≥ F (t) > 0,

where F (t) =
∫ t

0
f(s)ds.

(F4) F is an even function.

(A1) a ∈ C(R+, R).

(A2) There exist constants b1, b2 > 0 such that

b1 ≤ lim
t→∞

inf a(t) ≤ lim
t→∞

sup a(t) ≤ b2.

(A3) a(t)t
p(x)−1

p(x) is strictly increasing as t increases and

limt→0+ a(t)t
p(x)−1

p(x) = 0.
The first main result of this chapter is if the function a satisfies (A1), (A2), (A3), f satisfies
(F1), (F2), (F3), (F4), p(x) ≥ 2 and b2θ < b1

p+ , then Problem (7) possesses an unbounded
sequence of weak solutions.
For the second main result we consider and the following conditions:
(A4) There exist constants c1, c2 > 0 and b1, b2 > 0 such that for each t > 0

c1 + b1t
p(x)−2 ≤ tp(x)−2a(tp(x)) ≤ c2 + b2t

p(x)−2.

(F6)′

lim
|t|→+∞

sup
p(x)F (t)

|t|p(x)
< λ1(g(p(x))c1 + b1),

where λ1 is the first eigenvalue of the (−∆p(x), W
1,p(x)
0 (Ω)) and g = χ{2} denotes the characteristic

function of the set {2}.

(F7)′ (c2 + g(p(x))b2)µi < lim
t→0

inf
f(t)

t
≤ lim

t→0
sup

f(t)

t
< (c1 + g(p(x))b1)µi+1.

If a satisfies (A1), (A3), (A4), f satisfies (F1), (F2), (F6)′, (F7)′ and p(x) ≥ 2, then Problem
(7) has at least two nontrivial solutions.
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Chapter 5 is based on the paper ”Multiplicity results for nonlinear eigenvalue problems on
unbounded domains” published in ”Mathematica (Cluj)”.
In this chapter we study the elliptic problems of the following type

−div(a(x)|∇u|p(x)−2∇u) = λf(x, u(x)) in Ω,
a(x)|∇u|p(x)−2∇u · n + b(x)|u|p(x)−2u = µg(x, u(x)) on Γ,
u 6= 0 in Ω,

(Pλ,µ)

where λ, µ > 0, n denotes the unit outward normal on Γ.
We also consider the following assumptions:

(F1) f : Ω× R → R is a Carathéodory function such that f(·, 0) = 0 and

|f(x, s)| ≤ f0(x) + f1(x)|s|r−1,

where p+ < r < p+N
N−p+ , and f0, f1 are measurable functions which satisfy

0 < f0(x) ≤ Cfw1(x), and 0 ≤ f1(x) ≤ Cfw1(x) a.e. in Ω,

f0 ∈ L
r

r−1 (Ω; w
1

1−r

1 );

(F2)

lim
s→0

f(x, s)

f0(x)|s|p+−1
= 0, uniformly for all x ∈ Ω;

(F3) lim sups→+∞
1

f0(x)|sp+ |
F (x, s) ≤ 0 uniformly for all x ∈ Ω and

max|s|≤M F (·, s) ∈ L1(Ω) for all M > 0, where F (x, u) =
∫ u

0
f(x, s)ds;

(F4) there exists u0 ∈ E such that
∫

Ω
F (x, u0(x))dx > 0.

(G1) g : Γ× R → R is a Carathéodory function such that g(·, 0) = 0 and

|g(x, s)| ≤ g0(x) + g1(x)|s|m−1,

where p+ ≤ m < p+ · N−1
N−p+ , and g0, g1 are measurable functions satisfying

0 < g0(x) ≤ Cgw2(x) and 0 ≤ g1(x) ≤ Cgw2(x), a.e. in Γ,

g0 ∈ L
q

q−1 (Γ; w
1

1−q

2 );

(G2)

lim
s→0

g(x, s)

g0(x)|s|p+−1
= 0, uniformly for all x ∈ Γ;

(G3) lim sups→+∞
1

g0(x)|sp+ |
G(x, s) < +∞ uniformly for all x ∈ Γ and

max|s|≤M G(·, s) ∈ L1(Γ) for all M > 0, where G(x, u) =
∫ u

0
g(x, s)ds.

We prove that if f : Ω×R → R is a function satisfying conditions (F1)− (F4), then there exists
a non-degenerate compact interval [a, b] ⊂ [0, +∞] with the following properties:
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i) there exists a number σ0 > 0 such that for every λ ∈ [a, b] and for every function g :
Γ×R → R satisfying conditions (G1)− (G2), there exists µ0 > 0 such that for each µ ∈ [0, µ0],
problem (Pλ,µ) has at least one non-trivial solution in E with norm less than σ0;

ii) for every λ ∈ [a, b] and for every function g : Γ×R → R satisfying conditions (G1)− (G3),
there exists µ1 > 0 such that for each µ ∈ [0, µ1], problem (Pλ,µ) has at least two non-trivial
solutions in E.

Chapter 6 is based on the paper ”Existence and non-existence results for elliptic exterior
problems with nonlinear boundary conditions” published in ”Analele Universităţii Ovidius din
Constanţa”.
In this chapter we consider that Ω is a smooth exterior domain in RN , that is, Ω is the complement
of a bounded domain with C1,δ boundary (0 < δ < 1) and assume that a ∈ L∞(Ω)

⋂
C0,δ(Ω) is

a positive function, and b ∈ L∞(Ω)
⋂

C(Ω) is non-negative. We study problem{
−div(a(x)|∇u|p(x)−2∇u) + |u|q−2u = λg(x)|u|r−2u in Ω,

a(x)|∇u|p(x)−2∂νu + b(x)|u|p(x)−2u = 0 on ∂Ω,
(8)

where p ∈ C+(Ω), λ is a real parameter and ν is the unit vector of the outward normal on ∂Ω.
We assume

(H1) g ∈ L∞(Ω)
⋂

Lp0(Ω), with p0 := p∗/(p∗ − r), p+ < r < q < p∗, is a non-negative
function which is positive on a non-empty open subset of Ω, where p∗ := Np+/(N − p+);

(H2) b is a continuous positive function on Γ = ∂Ω.
We prove that (H1) and (H2) hold, then there exists λ∗ > 0 with the following properties:

(i) if λ < λ∗, then Problem (8) does not have any weak solution;
(ii) if λ ≥ λ∗, then Problem (8) has at least one weak solution u, with the properties

(a) u ∈ L∞
loc(Ω);

(b) u ∈ C1,α(Ω ∩BR), α = α(R) ∈ (0, 1);
(c) u > 0 in Ω;
(d) u ∈ Lm(Ω) for all p∗ ≤ m < ∞ and lim|x|→∞ u(x) = 0.

In the second result of this chapter we consider condition (H1)′, which is exactly assumption
(H1), with the only exception that condition p+ < r < q < p∗ is replaced by

p+ < q < r < p∗.

In this case we prove that if the assumptions (H1)′ and (H2) hold, then
(i) Problem (8) does not have any weak solution for any λ ≤ 0;
(ii) Problem (8) has at least one weak solution u, with the properties (a)− (d) for all λ > 0.
Chapter 7 is based on the paper ”Blow-up boundary solutions for a class of nonhomogeneous

logistic equations” published in ”Analele Universităţii din Craiova”.
In this chapter we study the equations of the type ∆p(x)u = g(x)f(u), where Ω is a bounded
domain, g is a non-negative continuous function on Ω which is allowed to be unbounded on
Ω and non-linearity f is a non-negative non-decreasing functions. We show that the equation
∆p(x)u = g(x)f(u) admits a non-negative local weak solution u ∈ W

1,p(x)
loc (Ω) ∩ C(Ω) such that

u(x) → ∞ as x → ∂Ω if ∆p(x)w = −g(x) in the weak sense for some w ∈ W
1,p(x)
0 (Ω) and f

satisfies a generalized Keller-Osserman condition.
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We find the solutions u ∈ W
1,p(x)
loc (Ω) ∩ C(Ω) to the problem{

−div(|∇u|p(x)−2∇u) = g(x)f(u) in Ω,
u(x) →∞ as d(x, ∂Ω) → 0.

(9)

The function g is supposed that is non-negative, which satisfies the following condition:
for any x0 ∈ Ω satisfying g(x0) = 0, there exists a sub-domain

O with O ⊂ Ω containing x0 such that g(x) > 0 for all x ∈ ∂O. (10)

Suppose that the non-linearity f satisfies
(F1) f : [0,∞) → [0,∞) is a non-decreasing C1 function such that f(0) = 0, and
(F2) f(s) > 0 for s > 0.

The growth condition on f at infinity,∫ ∞

1

1

(F (t))1/p(x)
dt < ∞, where F (t) :=

∫ t

0

f(s)ds, (11)

is crucial in the investigation of existence of blow-up solutions (the Keller-Osserman condition).
We prove that if D ⊆ RN is a bounded domain, g ∈ C(D) satisfied (10) on D and f satisfy

the Keller-Osserman condition, then Problem{
div(|∇u|p(x)−2∇u) = g(x)f(u) in D,

u(x) →∞ as d(x, ∂D) → 0,
(12)

admits a non-negative solution u ∈ W
1,p(x)
loc (D) ∩ C1,α(D), 0 < α < 1.

For the next result of this chapter we consider that g ∈ C(Ω) satisfies the condition:
There exist a sequence {Dk} of domains such that

(1) Dk ⊆ Dk+1; k = 1, 2, ....

(2) Ω =
⋃∞

k=1 Dk.

(3) g satisfied condition (10) on each Dk.

If f is a function satisfying the Keller-Osserman condition and g ∈ C(Ω) satisfy the G-
condition, then Problem (9) admits a non-negative blow-up solution, if the Dirichlet problem{

div(|∇w|p(x)−2∇u) = −g(x), x ∈ Ω,
w(x) = 0, x ∈ ∂Ω,

(13)

has a weak solution.
Chapter 8 is based on the paper ”Nonlinear hemivariational inequalities and applications to

nonsmooth mechanics” published in ”Advances in Nonlinear Variational Inequalities”. The goal
of this paper is to establish several existence results for a class of nonstandard hemivariational
inequalities. Our analysis includes both the cases of bounded and unbounded closed and convex
subsets in real reflexive Banach spaces. The proofs strongly rely on the KKM Principle combined
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with the Mosco Alternative. In the last section of the paper several applications illustrate the
abstract results that were proved throughout the paper.

Throughout this paper, V will denote a real reflexive Banach space, K is a nonempty, closed
and convex subset of V and (X, µ) will stand for a measure space of finite and positive measure.
For a given p > 1 we shall denote by p′ its conjugated exponent (that is p′ = p/(p− 1)) and we
assume that there exists a linear and compact operator T from V into Lp(X).

We are concerned with the study of a nonlinear hemivariational inequality of the type
(P) Find u ∈ K such that for all v ∈ K

Θ(u, v) +

∫
X

h(x, ū(x)) j0(x, ū(x); v̄(x)− ū(x)) dµ ≥
∫

X

f(x, ū(x))(v̄(x)− ū(x)) dµ,

where Θ : V × V → R is a nonlinear mapping, ū(x) := Tu(x) and h, j, f : X × R → R are
given functions. Here the notation j0(x, y; l) will stand for Clarke’s generalized derivative of the
mapping j(x, ·) at the point y ∈ R with respect to the direction l ∈ R while ∂j(x, y) denotes
Clarke’s generalized gradient of the mapping y 7→ j(x, y) for some fixed x ∈ X.

In order to prove the existence of at least one solution of the inequality problem (P) we
admit the following hypotheses:

(Hh) h : X × R → R is a Carathéodory function (i.e. h(·, y) : X → R is measurable for all
y ∈ R, and h(x, ·) : R → R is continuous for a.e. x ∈ X) and there exists a constant h0 > 0
such that 0 ≤ h(x, y) ≤ h0, for a.e. x ∈ X and every y ∈ R.

(Hf ) f : X × R → R is a Carathéodory function and there exists Cf > 0 and b ∈ Lp′(X) such
that

|f(x, y)| ≤ b(x) + Cf |y|p−1

for a.e. x ∈ X and all y ∈ R.

(HΘ) Θ : V × V → R is a nonlinear mapping which satisfies some of the bellow conditions:

(Θ1) Θ(u, u)=0, for all u ∈ V ;

(Θ2) the application u 7→ Θ(u, v) is weakly upper semicontinuous for each v ∈ V , that is,

lim sup
n→∞

Θ(un, v) ≤ Θ(u, v)

whenever un ⇀ u;

(Θ3) the application v 7→ Θ(u, v) is convex for each u ∈ V ;

(Θ4) u 7→ Θ(u, v) is a concave;

(Θ5) Θ is a monotone mapping, in the sense that, Θ(u, v) + Θ(v, u) ≥ 0, ∀u, v ∈ V .

We also assume that j : X × R → R satisfies one of the following assumptions:
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(H1
j ) j(·, y) : X → R is measurable for all y ∈ R and there exists k ∈ Lp′(X) such that

|j(x, y1)− j(x, y2)| ≤ k(x)|y1 − y2|, ∀x ∈ X, ∀y1, y2 ∈ R,

or,

(H2
j ) j(·, y) : X → R is measurable for all y ∈ R, the mapping j(x, ·) is locally Lipschitz for all

x ∈ X and there exists a constant C > 0 such that

|z| ≤ C(1 + |y|p−1), ∀x ∈ X, ∀y ∈ R, ∀z ∈ ∂j(x, y).

We prove that if K is a nonempty, bounded, closed and convex subset of V and we assume
that (Hh), (Hf ), (Θ1), (Θ2), (Θ3) and one of the conditions (H1

j ), (H2
j ) are fulfilled, then the

inequality problem (P) has at least one solution.
Also we prove that if K is a nonempty, bounded, closed and convex subset of V and assume

that (Hh), (Hf ), (Θ1), (Θ2), (Θ4), (Θ5) and (H1
j ) or (H2

j ) hold, then there exists a solution
for the nonlinear hemivariational inequality (P).

At finale we prove that if K is a nonempty, closed and convex subset of V and assume that
(Hh), (Hf ), (Θ1), (Θ2), (Θ4), (Θ5) and (H1

j ) or (H2
j ) hold, then there exists a solution for the

nonlinear hemivariational inequality (P), if there exists v0 ∈ K and q ≥ p such that

Θ(u, v0)

‖u‖q
V

→ −∞, as ‖u‖V →∞,

Chapter 9 is based on the paper ”Antiplane shear deformations of piezoelectric bodies in
contact with a conductive support” trimis spre publicare la ”Mathematiche Nachrichten”.

In this chapter we consider a mathematical model which describes the frictional contact be-
tween a piezoelectric body and an electrically conductive support. We model the material’s be-
havior with an electro-elastic constitutive law; the frictional contact is described with a boundary
condition involving Clarke’s generalized gradient and the electrical condition on the contact sur-
face is modelled using the subdifferential of a proper, convex and lower semicontinuous function.
The weak formulation of our model leads to a coupled system of a hemivariational inequality
and a variational inequality. The existence of weak solutions for our model will be a direct
consequence of the fact that a more general inequality, a variational-hemivaritional inequality,
admits solutions. Therefore, the mathematical treatment of the model involve the theory of
variational-hemivariational inequalities. The main ingredient in the proof of the existence result
is a fixed point theorem for set valued mappings, due to Tarafdar. Under additional hypotheses,
we prove the uniqueness of the weak solution.

The mathematical model which describes the antiplane shear deformation of a piezoelectric
cylinder in frictional contact with a conductive foundation is:
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Find u, ϕ : Ω̄ → R such that

(P) :



div (µ(x)∇u(x) + e(x)∇ϕ(x)) + f0(x) = 0 in Ω,
div (e(x)∇u(x)− β(x)∇ϕ(x)) = q0(x) in Ω,
u(x) = 0 on Γ1,
ϕ(x) = 0 on ΓA,
µ(x)∂νu(x) + e(x)∂νϕ(x) = f2(x) on Γ2,
e(x)∂νu(x)− β(x)∂νϕ(x) = qB(x) on ΓB,
−µ(x)∂νu(x)− e(x)∂νϕ(x) ∈ h(x, u(x))∂j(x, u(x)) on Γ3,
e(x)∂νu(x)− β(x)∂νϕ(x) ∈ ∂φ(x, ϕ(x)− ϕF (x)) on Γ3.

We are interested in finding weak solutions for the problem (P).
For this, we consider the following hypotheses:

(H1): µ ∈ L∞(Ω), β ∈ L∞(Ω), e ∈ L∞(Ω). There exist β∗, µ∗ ∈ R such that β(x) ≥ β∗ >
0 and µ(x) ≥ µ∗ > 0 almost everywhere in Ω.

(H2): f0 ∈ L2(Ω), q0 ∈ L2(Ω), f2 ∈ L2(Γ2), qB ∈ L2(ΓB), ϕF ∈ L∞(Γ3).

(H3): h : Γ3 ×R → R is a Carathéodory function (i.e. h(·, t) : Γ3 → R is measurable, for all
t ∈ R, and h(x, ·) : R → R is continuous, a.e. on Γ3). There exists a positive constant h0 such
that 0 ≤ h(x, t) ≤ h0, for all t ∈ R, a.e. on Γ3.

(H4): j : Γ3×R → R is a function which is measurable with respect to the first variable, and
there exists k ∈ L2(Γ3) such that a.e. on Γ3 and for all t1, t2 ∈ R we have

|j(x, t1)− j(x, t2)| ≤ k(x)|t1 − t2|.

(H5): φ : Γ3 ×R → R is a functional such that φ(·, t) : Γ3 → R is measurable for each t ∈ R
and φ(x, ·) : R → R is convex and lower semicontinuous a.e. on Γ3.

We prove that if conditions (H1)-(H5) are fulfilled, then there exists at least one weak
solution for problem (P).

We note that, under the the hypotheses (H1)-(H5), the uniqueness of the weak solution of
Problem (P) is an open problem.

Let us assume the following hypotheses:
(H6) there exists m > 0 such that (η1 − η2)(t1 − t2) ≥ −m|t1 − t2|2, for all t1, t2 ∈ R, all
ηi ∈ h(x, ti)∂j(x, ti), i ∈ {1, 2}, and a.e. on Γ3;
(H7) min{µ∗, β∗} > mC2,
where C > 0 appears in the inequality ‖v‖L2(Γ3) ≤ C‖v‖V for all v ∈ V.

We prove that if conditions (H1)-(H7) are fulfilled, then problem (P) has a unique weak
solution.

The nine chapters presented above are followed by a rich bibliography, containing 184 refer-
ence papers.
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