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In this thesis we are concerned with some important topics in the theory of partial differential
equations. All the problems studied here are containing nonlinearities and we are concerned
with the existence of solutions (sometimes nonexistence, sometimes uniqueness or multiplicity).
We incorporate the principle of the symmetry into the overall organization of the text, which is
subdivided into three parts. This partition of our paper is given by the class of the problems
studied, as follows:

• Part I (Chapters 2-5): elliptic problems with large solutions;

• Part II (Chapters 6-9): variational problems with p(x)-growth conditions;

• Part III (Chapters 10-12): degenerate and singular boundary value problems.

The first chapter of every part (we refer to Chapters 2, 6 and 10) contains some preliminaries,
disposed into three sections. The first section is an introductory section where we present some
history notes, underlining the pioneering papers for each field. The second section contains some
significant recent results and the third section gives the physical motivation of the study.

With the exception of Chapter 1, which was reserved to the Introduction, the other eight
chapters (Chapters 3-5, 7-9 and 11-12) are based on published articles and on articles accepted
to be published.

Chapter 3 is based on the paper ”Entire large solutions for logistic-type equations”, which
will appear in Annals of the University of Craiova. In this chapter we consider the following
class of semilinear elliptic equations ∆u = u + e−|x|

a
uαf(u) in RN ,

u ≥ 0, u 6≡ 0 in RN ,
(1)

where N ≥ 3, a ≥ 1, α > 1 and f is under the assumptions

f ∈ C1([0, ∞)), f ′ ≥ 0, f ≥ 1. (2)

Firstly we prove that the equation ∆u = e−|x|
a
uαf(u) in RN ,

u ≥ 0, u 6≡ 0 in RN
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has a positive entire large solution. Then we discuss the particular case of equation (1) when
a = 1 and α > 2, namely  ∆u = u + e−|x|uαf(u) in RN ,

u ≥ 0, u 6≡ 0 in RN .
(3)

The main result asserts the fact that even though both equations ∆u = u in RN ,

u ≥ 0, u 6≡ 0 in RN ,

and  ∆u = e−|x|uαf(u) in RN ,

u ≥ 0, u 6≡ 0 in RN ,

have positive entire large solutions, equation (3) has no such solutions. The proof is based on
the classical method of reduction to absurdity. In our calculus we rely on the properties of
the special functions gamma and Bessel, and we use the maximum principle. It remains to be
seen whether or not problem (1) admits positive entire large solutions. Although we bring some
arguments supporting the idea that for a sufficiently large the answer is positive, we let this
matter as an open problem.

Chapter 4 is based on the paper ”On the existence and nonexistence of positive entire large
solutions for semilinear elliptic equations”, which will appear in the journal Analele Ştiinţifice
ale Universităţii Ovidius Constanţa. Here we improve the results obtained in Chapter 3 by
discussing the following class of semilinear elliptic equations ∆u = p1(x)uα + p2(x)uβf(u) in RN ,

u ≥ 0, u 6≡ 0 in RN ,
(4)

where N ≥ 3 and f is under the assumptions (2). In this chapter we will not give only existence
results, but some nonexistence results, too. Being under the assumptions that α, β > 1 and
p1, p2 ∈ C0,µ

loc (RN) (N ≥ 3, 0 < µ < 1) are c-positive in Ωn (i.e. for every x0 ∈ Ωn with
p1(x0) = 0 (respectively p2(x0) = 0) there is a domain Ω0 3 x0 such that Ω0 ⊂ Ωn and p1 > 0
(respectively p2 > 0) on ∂Ω0), where by Ωn we understand the ball |x| < n, if problem ∆u = p1(x)uα in RN ,

u ≥ 0, u 6≡ 0 in RN ,
(5)
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or problem  ∆u = p2(x)uβf(u) in RN ,

u ≥ 0, u 6≡ 0 in RN ,
(6)

has no positive entire large solutions, nor does problem (4).
But what happens when both problems (5) and (6) have positive entire large solutions? In

Section 4.3 we give some examples in both directions. Moreover, if we assume N ≥ 3, β > 2, f
verifies (2), p1 ∈ C(RN) satisfies p1(x) = p1(|x|) ≥ 1 with∫ ∞

0

rp1(r)dr = ∞,

and p2 ∈ C0,µ
loc (RN) (0 < µ < 1) satisfies p2(x) ≥ e−|x| with∫ ∞

0

rMp2(r)dr < ∞,

where Mp2(r) ≡ max|x|=r p2(x) then we prove that the particular case of problem (4), ∆u = p1(|x|)u + p2(x)uβf(u) in RN ,

u ≥ 0, u 6≡ 0 in RN ,

has no positive entire large solutions, while both problems (6) and the particular case of problem
(5),  ∆u = p1(|x|)u in RN ,

u ≥ 0, u 6≡ 0 in RN ,

have positive entire large solutions.

Chapter 5 is based on the paper ”Uniqueness of singular radial solutions for a class of quasi-
linear problems” which will appear in the Bulletin of the Belgian Mathematical Society – Simon
Stevin. In this chapter we establish the uniqueness and the blow-up rates of the singular value
problem: 

−∆pu = λup−1 − b(x)uq in BR(x0),

u > 0 in BR(x0),

u = ∞ on ∂BR(x0),

(7)

where BR(x0) is the ball of radius R centered at x0 ∈ RN , N ≥ 3, λ > 0, b ∈ C0,µ(Ω), 0 < µ < 1,
b > 0, q > p− 1 > 1 and we denoted by ∆p the p-Laplace operator given by

∆pu = div
(
|∇u(x)|p−2∇u(x)

)
.
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The boundary condition in (7) is understood as u(x) → +∞ when d(x) = dist(x, ∂Ω) → 0+.
The main result of this chapter is based on some auxiliary theorems in which we are extending

some already known results from the case p = 2 to the case p > 2. We prove that there exists a
unique large solution u(x) to the problem (7) which satisfies

lim
d(x)→0

u(x)

K(b∗(‖x− x0‖))−β
= 1,

where λ > 0, the potential function b is a positive radially symmetric function, d(x) = dist(x, ∂BR(x0)),
K is a constant defined by

K =
[
(p− 1)[(β + 1)C0 − 1]βp−1(C0b0)

(p−2)/2
] 1

q−p+1 ,

with

β =
p

2(q − p + 1)
, q > p− 1 > 1, b0 = b(R) > 0, C0 = lim

r→R

(B(r))2

b∗(r)b(r)
≥ 1

and

B(r) =

∫ R

r

b(s)ds, b∗(r) =

∫ R

r

∫ R

s

b(t)dtds.

Chapters 7-9 are dedicated to the study of the problems with p(x)-growth conditions. In
Chapters 7 and 8 we provide some existence results using as main argument the mountain-pass
theorem. One of the main ideas in searching weak solutions for PDEs is based on the critical
point theory. More precisely, an equation can be associated with an energetic functional whose
critical points will offer the solutions of the equation.

In these chapters we present some results on the spaces Lp(x)(Ω) and W 1,p(x)(Ω), since the
p(x)-growth conditions can be regarded as a very important class of nonstandard growth con-
ditions and the interest comes from the applicability in elastic mechanics and mathematical
modelling of non-Newtonian fluids. Most materials can be modeled with sufficient accuracy
using classical Lebesgue and Sobolev spaces, Lp and W 1,p, where p is a fixed constant. For some
materials with inhomogeneities, like electrorheological fluids, this is not adequate, but rather
the exponent p should be able to vary.

Chapter 7 is based on the paper ”Existence of nontrivial weak solutions for a class of prob-
lems with p(x)-growth conditions” published in Proceedings of the National Session of Student
Scientific Communications, Iaşi 2007. Using as our main tool the mountain-pass theorem of
Ambrosetti and Rabinowitz, we establish the existence of weak solutions for the following prob-
lem: 

−∆p(x)u(x) + a(x)|u(x)|p(x)−2u = |u(x)|q(x)−1u in Ω,

u 6≡ 0 in Ω,

u = 0 on ∂Ω ,
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where Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth boundary, p, q : Ω → R are continuous
functions with 2 ≤ minΩ p(x) < maxΩ p(x) < N , maxΩ p(x) < minΩ q(x) + 1, q(x) ≤ N ,
q(x) + 1 < Np(x)/(N − p(x)) for all x ∈ Ω and a : Ω → R satisfies the condition: a ∈ L∞(Ω)
and there exists a0 > 0 such that a(x) ≥ a0, for any x ∈ Ω.

We denoted by ∆p(x) the p(x)-Laplace operator, i.e.

∆p(x)u = div
(
|∇u(x)|p(x)−2∇u(x)

)
.

The results of Chapter 8 are based on the following articles: ”Existence of solutions for
an elliptic equation involving the p(x)-Laplace operator”, published in Electronic Journal of
Differential Equations and ”Fraternization in ... Mathematics”, published in Proceedings of the
International Conference of Young Scientists, affiliated to CASC, Kisinev 2006. In Chapter 8
we also use the mountain-pass theorem of Ambrosetti and Rabinowitz to prove the existence of
solutions for the problem −∆p(x)u(x) + b(x)|u(x)|p(x)−2u = f(x, u), for x ∈ RN

u ∈ W
1,p(x)
0 (RN)

where N ≥ 3, p : RN → R is Lipschitz continuous with 2 ≤ ess infRN p(x) < ess supRN p(x) < N ,
b : RN → R and f : RN × R → R are two functions which satisfy the hypotheses:

(b1) b ∈ L∞
loc(RN) and there exists b0 > 0 such that b(x) ≥ b0, for any x ∈ RN ;

(f1) f ∈ C1(RN × R), with f = f(x, z), f(x, 0) = 0 and lim
z→0

fz(x,z)

|z|p+−2
= 0, for all x ∈ RN ;

(f2) p+ < Np−

N−p−
and there exist s ∈ (p+ − 1, Np−/(N − p−) − 1), θ ∈ (s, Np−/(N − p−)) and

g1 ∈ L∞(RN) ∩ Lθ/(θ−p++1)(RN), g2 ∈ L∞(RN) ∩ Lθ/(θ−s)(RN), with g1(x), g2(x) ≥ 0 such that

|fz(x, z)| ≤ g1(x)|z|p+−2 + g2(x)|z|s−1, ∀x ∈ RN , ∀ z ∈ R.

(f3) there exists µ > p+ such that

0 < µF (x, z) = µ

∫ z

0

f(x, t)dt ≤ zf(x, z), ∀ x ∈ RN ,∀ z ∈ R \ {0}.

Chapter 9 is based on the paper ”Existence and multiplicity of solutions for a Neumann
problem involving variable exponent growth conditions” published in Glasgow Mathematical
Journal. We discuss the existence of solutions for the Neumann problem −div(|∇u|p(x)−2∇u) = f(u), for x ∈ Ω

∂u

∂ν
= 0, for x ∈ ∂Ω
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where Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth boundary, p ∈ C(Ω) with 1 < p(x) <
N for all x ∈ Ω and f : R → R is a continuous function given by formula

f(t) =


|t|a−1t, for |t| ≤

(
1

2

) 1
a−1

t− |t|a−1t, for |t| >
(

1

2

) 1
a−1

,

where a is a positive real number. Our main result asserts the existence of two solutions if
p+ < a < Np−

N−p−
, using as main tool an abstract linking argument due to Brézis and Nirenberg.

In Chapters 11-12 we focus on the class of problems with degeneracies and singularities.
Here we justify the existence and uniqueness of weak solutions for some problems modelling
the antiplane shear deformation of a cylindrical body. In order to do that we introduce some
weighted spaces and we establish some new results. From the mathematical point of view, the
novelty comes from the fact that we consider problems where the function u vanishes only on a
part (of positive Lebesgue measure) of the boundary, instead of vanishing on the whole boundary.
From the mechanical point of view, the main novelty of our study comes from the fact that,
unlike the research already made in this field, we are able to consider the degenerate situation
when infx∈Ω µ(x) = 0. The results obtained here are based on the work ”Weak solutions for
antiplane models involving elastic materials with degeneracies” which will appear in Zeitschrift
für Angewandte Mathematik und Physik (ZAMP).

In Chapter 11 we consider the following class of boundary value problems

div
(
µ2(x)∇u(x)

)
+ f0(x) = 0 in Ω,

u(x) = 0 on Γ1,

µ2(x)
∂u

∂ν
(x) = f2(x) on Γ2,

where Ω ⊂ R2 is an open, bounded, connected subset, with Lipschitz continuous boundary Γ
partitioned in two measurable parts Γ1, Γ2, such that the Lebesgue measure of Γ1 is strictly
positive. Under the assumptions

µ ∈ L2(Ω), µ−1 ∈ L2(Ω), µ(x) 6= 0 a.e. on Ω, (8)

inf
x∈Ω

µ2(x) = 0, sup
x∈Ω

µ2(x) = ∞ (9)

and
f0 ∈ L2(Ω), f2 ∈ L∞(Γ2), (10)

we provide the existence and the uniqueness of a weak solution using the Lax-Milgram theorem.
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In Chapter 12 we study the problem

div(a(x,∇u(x))) + f0(x) = 0 in Ω,

u(x) = 0 on Γ1,

a(x,∇u(x)) · ν(x) = f2(x) on Γ2,

−a(x,∇u(x)) · ν(x) ∈ ∂ϕx(u(x)) on Γ3,

where Ω is a regular domain, a : Ω× R2 → R2, a(x, v) = [µ2(x) + β(x)]v − 2β(x)P
eK

1
2
v, P

eK is

the projection operator on K̃ = Bk(OR2), ϕx : R → R, ϕx(s) = g(x)|s| and g ∈ L∞(Γ3), g ≥
0 a.e. on Γ3. Also, to the hypotheses (8), (9) and (10) we add β ∈ L∞(Ω) and there exists c >
0 such that 0 < β(x) ≤ c µ0(x) a.e. in Ω. Then we establish the existence of a unique weak
solution by using a result from the theory of variational inequalities.

The twelve chapters presented above are followed by a rich bibliography, containing 227
reference papers.
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