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1 Reducible second-class theories
The main subject approached in the thesis is the problem of the irreducible analysis of
the second-class constraints reducible of an arbitrary order. The approach in irreducible
manner of the reducible second-class theories is based on the following steps: i) we express
the Dirac bracket for the reducible system in terms of an invertible matrix; ii) we construct
an irreducible second-class system (on a larger phase-space) equivalent to the original
reducible one; iii) we derive of the Dirac bracket with respect to the irreducible second-
class constraints; iv) we prove the fact that the fundamental Dirac brackets derived within
the irreducible and original reducible settings coincide (weakly); v) the application of
the general procedure on various models. We initially approach second-class constraints
reducible of order two and three by implementing the main steps mentioned above, and
then generalize these results to an arbitrary order of reducibility.

1.1 The irreducible approach to second-order reducible second-
class constraints

1.1.1 Second-order reducible second-class constraints

We start with a system locally described by N canonical pairs za = (qi; pi), subject to
some constraints

��0 (z
a) � 0; �0 = 1;M0: (1)

In addition, we presume that the functions ��0 are not all independent, but there exist
some nonvanishing functions Z �0

�1
and Z �1

�2
such that

Z �0
�1
��0 = 0; �1 = 1;M1; (2)

Z �1
�2
Z �0
�1
� 0; �2 = 1;M2: (3)

We will assume that the reducibility stops at order two, so the functions Z �1
�2

are by
hypothesis taken to be independent.
The constraints (1) are purely second class if any maximal, independent set of M �

M0�M1+M2 constraint functions �A (A = 1; � � � ;M) among ��0 is such that the matrix

C
(2)
AB = [�A; �B] ; (4)

is invertible.
In terms of independent constraints, the Dirac bracket takes the form

[F;G](2)� = [F;G]� [F; �A]M (2)AB [�B; G] ; (5)

where M (2)ABC
(2)
BC � �AC .
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We can rewrite the Dirac bracket (5) without �nding a de�nite subset of independent
second-class constraints as follows. We start with the matrix

C
(2)
�0�0

= [��0 ; ��0 ]; (6)

which clearly is not invertible because

Z �0
�1
C
(2)
�0�0

� 0: (7)

Let �A �1
�0
be some functions chosen such that satisfy the condition

rang
�
Z �0
�1
�A �1
�0

�
� rang

�
D �1
�1

�
=M1 �M2: (8)

We introduce an antisymmetric matrix M (2)�0�0 through the relation

C(2)�00M
(2)0�0 � D �0

�0
� � �0

�0
� �A �1

�0
Z
�0
�1
; (9)

such that the formula

[F;G](2)� = [F;G]�
�
F; ��0

�
M (2)�0�0

�
��0 ; G

�
; (10)

de�nes the same Dirac bracket like (5) on the surface (1).
It can be proved that for systems with second-stage reducible second-class constraints

the Dirac bracket can be written in terms of an invertible matrix.

Theorem 1 There exists an invertible, antisymmetric matrix ��0�0 , in terms of which
the Dirac bracket (10) becomes

[F;G](2)� = [F;G]�
�
F; ��0

�
�(2)�0�0

�
��0 ; G

�
: (11)

on the surface (1).

The relationship between the invertible matrix �(2)�0�0 and the matrix M (2)�0�0 is
given by a relation

M (2)�0�0 � D�0
�0
�(2)�0�0D�0

�0
: (12)

1.1.2 Intermediate system

We introduce some new variables, (y�1)�1=1;��� ;M1
with the Poisson brackets�

y�1 ; y�1
�
= !�1�1 ; (13)

and consider the system subject to the reducible second-class constraints

��0 � 0; y�1 � 0: (14)
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The Dirac bracket on the phase-space locally parameterized by the variables (za; y�1),
corresponding to the above second-class constraints reads as

[F;G](2)�
���
z;y
= [F;G]�

�
F; ��0

�
�(2)�0�0

�
��0 ; G

�
� [F; y�1 ]!�1�1

�
y�1 ; G

�
: (15)

The Dirac bracket (15) coincide (weakly) with that written in terms of invertible matrix
�(2)�0�0

[F;G](2)�
���
z;y
� [F;G](2)� : (16)

1.1.3 Irreducible system

Theorem 2 There exists a set of constraints (on the larger phase-space (za; y�1))

~��0 = ��0 + A�1�0y�1 � 0; ~��2 = Z�1�2 y�1 � 0; (17)

such that:
(i)

~��0 � 0; ~��2 � 0, ��0 � 0; y�1 � 0: (18)

(ii)de�ne an irreducible set of second-class constraints, i.e. the matrix

C��0 = [~��; ~��0 ] ; (19)

is invertible, where ~�� =
�
~��0 ; ~��2

�
:

The functions A�1�0 are de�ned by the relation

�A�1�0 = A�1�0 ê
�1
�1
; (20)

where ê�1�1 are the elements of an invertible matrix.
The Dirac bracket associated with the irreducible second-class constraints (17) takes

the concrete form

[F;G](2)�
���
ired

= [F;G]�
�
F; ~��0

�
�(2)�0�0

�
~��0 ; G

�
��

F; ~��0
�
Z�01 ê

1
�1
!�1�1A�2�1

�D�2
�2

�
~��2 ; G

�
��

F; ~��2
�
�D�2
�2
A�2�1!

�1�1 ê
1
�1
Z�01

�
~��0 ; G

�
��

F; ~��2
�
�D�2
�2
A�2�1!

�1�1A�2�1
�D�2
�2

�
~��2 ; G

�
: (21)

Theorem 3 The Dirac bracket with respect to the irreducible second-class constraints
coincides with that of the intermediate system

[F;G](2)�
���
ired

� [F;G](2)�
���
z;y
: (22)

Combining (16) and (22), we reach the result

[F;G](2)� � [F;G](2)�
���
ired

: (23)
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1.2 Generalization to an arbitrary reducibility order L

1.2.1 Reducible second-class constraints of order L

We will consider the case of a system of second-class constraints, reducible of an arbitrary
order L

Z�0�1��0 = 0; Z�1�2Z
�0
�1
� 0; : : : ; Z�L�1�L

Z�L�2�L�1
� 0; (24)

with �k = 1;Mk for each k = 1; L. In addition, the reducibility functions of maximum
order (L), Z�L�1�L , are assumed to be all independent. Consequently, the number of

independent second-class constraints is equal to M �
LP
k=0

(�)kMk.

The Dirac bracket in terms of M independent functions �A takes the form

[F;G](L)� = [F;G]� [F; �A]M (L)AB [�B; G] ; A = 1;M; (25)

where C(L)ABM
(L)BC � �CA, with C

(L)
AB = [�A; �B].

The matrix of the Poisson brackets among the constraint functions

C
(L)
�0�0

=
�
��0 ; ��0

�
(26)

is not invertible due to the relations Z�0�1C
(L)
�0�0

� 0 but its rank is equal to M .
Let

�
�A�k�k�1

�
k=1;L

be subject to the relations

rang
�
Z
�k�1
�k

�A
k
�k�1

�
� rang

�
Dk
�k

�
�

LX
i=k

(�)k+iMi; (27)

�A�k�1�k�2
�A�k�k�1 � 0: (28)

We introduce an antisymmetric matrix, of elements M (L)�0�0 , through the relation

C
(L)
�0�0

M (L)�00 � D0
�0
� � �0

�0
� �A �1

�0
Z
�0
�1
; (29)

such that
[F;G](L)� = [F;G]�

�
F; ��0

�
M (L)�0�0

�
��0 ; G

�
(30)

de�nes the same Dirac bracket like (25) on the surface (1).
The Dirac bracket for L-order reducible constraints can be expressed in terms of a

noninvertible matrix.

Theorem 4 There exists an invertible, antisymmetric matrix �(L)�0�0 such that Dirac
bracket (30) takes the form

[F;G](L)� = [F;G]�
�
F; ��0

�
�(L)�0�0

�
��0 ; G

�
; (31)

on the surface (1).

The relationship between the invertible matrix M (L)�0�0 and the matrix �(L)�0�0 is
given by the relation

M (L)�0�0 � D�0
�0
�(L)�0�0D�0

�0
: (32)
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1.2.2 Intermediate system

We introduce some new variables,
�
y�2k+1

�
�2k+1=1;M2k+1

, with k = 0;
�
L�1
2

�
, exhibiting the

Poisson brackets h
y�i ; y�j

i
= !�i�j�ij; (33)

and consider the system subject to the reducible second-class constraints

��0 � 0;
�
y�2k+1

�
k=0;[L�12 ]

� 0: (34)

The Dirac bracket on the phase-space locally parameterized by the variables
�
za;
�
y�2k+1

�
k=0;[L�12 ]

�
constructed with respect to the above second-class constraints, reads as

[F;G](L)�
���
z;y
= [F;G]�

�
F; ��0

�
�(L)�0�0

�
��0 ; G

�
�
[L�12 ]X
k=0

�
F; y�2k+1

�
!�2k+1�2k+1

�
y�2k+1 ; G

�
; (35)

and coincide (weakly) with Dirac bracket written in terms of invertible matrix �(L)�0�0

[F;G](L)�
���
z;y
� [F;G](L)� : (36)

1.2.3 Irreducible system

Theorem 5 There exists a set of constraints (on the larger phase-space, locally parame-

terized by
�
za;
�
y�2k+1

�
k=0;[L�12 ]

�
)

-if L odd

~��0 � ��0 + A�1�0y�1 � 0; (37)

~��2k � Z�2k�1�2k
y�2k�1 + A�2k+1�2k

y�2k+1 � 0; k = 1;

�
L

2

�
; (38)

-if L even

~��0 � ��0 + A�1�0y�1 � 0; (39)

~��2k � Z�2k�1�2k
y�2k�1 + A�2k+1�2k

y�2k+1 � 0; k = 1;
L

2
� 1; (40)

~��L � Z�L�1�L
y�L�1 � 0; (41)

with the following properties:
(i) �

~��2k
�
k=0;[L2 ]

� 0,
�
��0 � 0;

�
y�2k+1

�
k=0;[L�12 ]

� 0
�
; (42)
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(ii) de�ne an irreducible set of second-class constraints, i.e. the matrix

C��0 = [~��; ~��0 ] ; (43)

is invertible, where ~�� �
�
~��2k

�
k=0;[L2 ]

.

The functions A�2k+1�2k appearing in the above are de�ned by the relations:
-if L odd

�A�2k+1�2k
= A

�2k+1
�2k ê

�2k+1
�2k+1

; k = 0;

�
L

2

�
� 1; (44)

�A�L�L�1 = A�L�L�1
�D�L
�L
; (45)

-if L even
�A�2k+1�2k

= A
�2k+1
�2k ê

�2k+1
�2k+1

; k = 0;
L

2
� 1: (46)

The elements ê�2k+1�2k+1
determine an invertible matrix and iar �D�L

�L
are the elements of the

inverse of the matrix of elements D�L
�L = Z

L�1
�L A

�L
L�1.

The Dirac bracket built with respect to the irreducible second-class constraints (37)
and (38) (or (39)�(41))

[F;G](L)�
���
ired

= [F;G]�
�
F; ~��0

�
�(L)�0�0

�
~��0 ; G

�
�
[L2 ]�1X
k=0

n�
F; ~��2k

�
Z�2k�2k+1

ê�2k+12k+1
!2k+1�2k+1 �A

�2k+2
�2k+1

h
~��2k+2 ; G

i
+
h
F; ~��2k+2

i
�A�2k+2�2k+1

!�2k+12k+1 ê
�2k+1
2k+1Z

�2k
�2k+1

�
~��2k ; G

�
+
h
F; ~��2k+2

i
 �2k+2�2k+2

h
~��2k+2 ; G

io
: (47)

Theorem 6 The Dirac bracket with respect to the irreducible second-class constraints
(47) coincides with that of the intermediate system

[F;G](L)�
���
ired

� [F;G](L)�
���
z;y
: (48)

Based on (36) and (48), we are led to the relation

[F;G](L)� � [F;G](L)�
���
ired

; (49)

which expresses the fact that second-class constraints reducible of an arbitrary order L
can be systematically approached in an irreducible manner.
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