CRAIOVA UNIVERSITY
FACULTY OF AUTOMATICS, COMPUTERS AND
ELECTRONICS

PHD THESIS

ALGORITHMS FOR INCREASING THE SPEED
OF INFORMATION TRANSFER IN DISTRIBUTED

DATABASES

- ABSTRACT -

PhD
ADRIAN RUNCEANU

Coordinator:
Professor Ph.D. Eng. MIRCEA PETRESCU

2009

This thesis presents generally several implementation problems about data fragmentation
and in particular about the design of vertical partitioning in distributed relational databases and for
distributed object-oriented databases and also horizontal fragmentation with the data allocation in
the distributed object-oriented databases.

1. Thus it was studied the applying of several clustering algorithms for the distributed
databases design. Some algorithms, such as error-squares algorithm, were adapted and
implemented for data vertical fragmentation, too.

2. It was presented an objective function for n partitions, composed of two terms which
provides a good process for decreasing the cost of transactions.

3. The function can be modified by adding new information about the types of queries (for
data update or data retrieval), information relating to the allocation of data in the network and the
cost of data access located at a distance.

4. The fragments allocation presented through an heuristical approach propose - in the case
of distributed object-oriented databases - a variant that combines the classes instances
fragmentation at the same time as the data allocation on different sites.

The PhD thesis is structured on 7 chapters, followed by the annexes and bibliography.

The Chapter 1 "Introduction” presents the main aspects of the distributed databases
design.

The distributed databases design is an optimization process that requires to obtain solutions
to several interpenetrating problems, namely data fragmentation, data allocation and local
optimization. Each problem can be solved through different approaches, and therefore the design of
distributed databases is becoming a very difficult task. Usually the design process is by definition
heuristical.

The distributed databases design derived from the non-distributed databases design only in
terms of distribution. The design involves data acquisition, database partitioning, the allocation and
replication of partitions and local optimization. The database partitioning can be performed in
several different ways: vertical, horizontal and hybrid (also called mixed) partitioning. This aspect
of a database design will be highlighted in this thesis and namely the developing of an algorithm
for checking some various algorithms proposed in literature for distributed databases partitioning
(fragmentation).

Basically, it will be considered the problem of vertical data partitioning (fragmentation),
also known as the attributes partitioning. This technique is used for the databases design to improve
the performance of transactions. In vertical partitioning, the attributes of a relation R are together in
groups that do not overlap and the relationship R is designed on relations fragments in accordance
with these attributes groups.

In the distributed databases, these fragments are allocated on different sites. Here comes the
aim of vertical partitioning to create vertical fragments of a relationship to minimize the cost of the
data accessing during the transaction process. If the fragments are closer as possible to the needs of
the transactions set, then the transactions processing cost can be reduced.

For the distributed databases design, the transaction cost is reduced by increasing the local
transactions (on a site) and at the same time by reducing the amount of data views which are not
local. The aim of vertical partitioning technique (and in general, partitioning techniques) is to find a
partitioning scheme to meet the objective outlined above.

Note that the partitioning problem can be tackled on different levels of detail considering
some additional information.

The data fragmentation. In this thesis, I have to consider only the information about
transactions as input data to manage the partitioning problem effectively. In fact, the global
optimization problem (which includes a large number of parameters and a metric complex) is
divided into several smaller optimization problems in order to reduce the search space and to
reduce the complexity of each problem separately.

In specialty literature are proposed several vertical partitioning algorithms, so it can be
measured the affinity between pairs of attributes and try to group attributes together under the
affinity between, using the algorithm BEA (bond energy algorithm). In an article we use an
heuristical cost estimator for design a file to obtain a partitioning scheme "bottom-to-top". In
another article extends the approach proposed by BEA and algorithm has two phases for vertical
partitioning. The partitioning algorithms mentioned above use several heuristical methods for a
relationship fragmentation.

As input date for these algorithms it is used the attributes matrix (AUM). This matrix has the
attributes as columns, the transactions as lines and the transactions frequency access are values in
the matrix. The most previous algorithms used for the data fragmentation use of affinity matrix of
attributes (AAM) which is derived from AUM. AAM is a matrix in which for each pair of attributes
it 1s stored the total frequency access of the transactions that access the pair of attributes. The
results of different algorithms are often different, even if it is the same affinity matrix of the
attributes, so it indicates that the objective functions used are different. Most vertical partitioning
algorithms do not have an objective basis for assessing the correctness of partitions that are
obtained through the application of those algorithms. Also, there is a common criterion or objective
function to evaluate the results of these algorithms for vertical partitioning,

Chapter 2 "A few basic concepts" presents some basic concepts relating to distributed
databases. Such are reviewed the models of representation for relational databases, distributed
databases and object-oriented databases.

So, are described generally the databases systems, focusing on the components of their
software. Then it is presented the relational data model and some operators of the structured query
language (SQL).

The most popular database models so far are the relational model and the model that has
managed to impose in recent years as a very good model, namely object-oriented model. All of
them are presented in detail.

In recent years, the distributed databases (BDD) have become an important sector of
processing information and it can be anticipated that their importance will grow rapidly. This trend
is motivated both organizational and technological because BDD removes many of the
shortcomings of centralized databases and are well received for the decentralizing organizational
structures.

A BDD can be defined logically like a collection of integrated data but physically
distributed on the stations of computers network.

This definition highlights two important aspects of BDD:

1. The logical integrating of data collections. For the user it is a single database with
which the user interacts like with centralized databases (BDC).

2. Physical distribution refers to the database physical partitioning on the spaces from a
computers network.

Both issues are vague enough to make differences between BDD and a set of local
databases. During normal operations, the requests for applications from terminals of each station
needs only the access to local database. These applications are executed only by the computer
station and they are called local applications.

What distinguishes a set of local databases of a BDD is the existence of applications that
access data from more stations. These applications are called global applications or distributed
applications. It may comprise considerations that we have done in a working definition.

A BDD is a collection of logical integrated data that are physically distributed on stations of
a computers network. Each station from the network has processing autonomy that enables it to
achieve local applications. Also, cach station participate on the implementation of global
applications that require accessing data from more stations.

Centralized control. The ability to achieve a centralized control over the information
resources of an enterprise or organizational structures has been considered one of the strongest
motivations for entering the databases. The fundamental function of the database administrator is to
ensure the protection and security for data, the data themself are recognized as important
investment of enterprises that requires centralized control.

For the BDD the notion of centralized control is a little stressed. This depends on the
architecture, too. Generally, we can identify a hierarchical control structure based on a global
manager who has overall responsibility of the entire BDD and on the local administrators on their
respective responsibilities linked to the local databases. l.ocal administrators may have a high
degree of autonomy which can go up to the coordination between the stations. BDD differ greatly
in terms of autonomy from the complet autonomy of stations, without the global administrator, to
the most complete centralized control.

Data independence. On the BDD the insurance of data independence from applications
programs has the same significance as for BDC, but there is a new aspect of distribution
transparency. By the distribution transparency the programs can be written notwithstanding the
physical distribution of data. Moving data from one station to another only affects the speed of
execution, not the correctness of the program.

As the data independence, the distribution transparency is obtained through a multi-
architecture with different descriptions of the data.

The insurance of a minimal and controlled redundancy. In the BDD, there are several
reasons to consider the data redundancy a desirable feature:

- the localization is faster when the data are replicated on all the stations where they are

required by the applications;

- the system availability and security increases when the data are replicated. If a station fall

the applications may be directed to the stations where the data are replicated.

The data redundancy reduces the effort for the data retrieval but increase the upgrade effort.

The evaluation of an optimal degree of redundancy must consider the report between data
retrieval accesses and data update accesses.

The integrity and restoring of data and the competition control. In the BDD case, the
integrity, restoring of data and the competition control achievements, although it relates to
different issues, they are strongly interconnected. To a large extent, the solutions to these problems
are related on the way of transactions achieving. A transaction is an atomic unit of execution, a
sequence of operations that are either executed entirely or not performed. In the BDD, the problem
of transactions atomicity becomes a particular issue related to the system behavior when one of the
stations is not operational: to abort the whole transaction or to attempt a correct execution the
transaction even if both stations are not simultaneously operational.

The data safety and security. In traditional databases, the database administrator who has
the centralized control allows only authorized access to data. In BDD, the administrators face the
same problems as traditional database administrators. They are mentioned two particular issues:
- In BDD, with a high degree of autonomy of the stations, the local databases are protected because
the local administrators conducted their own protection not depend on a central administrator;
- Security issues are inherent to distributed systems because the network communication may be a
weak point in achieving protection.

In Chapter 3, "Architecture of distributed databases” they are presented the main
architectures of distributed databases, and chapter 4" The database server" offers for
presentation the Oracle server for databases.

Chapter 5, "The distributed databases fragmentation” is the main chapter of this thesis
because it presents more what does it means the data fragmentation if the databases are distributed,
beginning with the fragmentation types and data fragmentation rules, then passing through the
presentation of horizontal vertical and hybrid (mixed) fragmentations, and completing using
clustering algorithms for data fragmentation, and particular case, both the vertical fragmentation in
distributed and relational databases. as in the case of distributed object-oriented databases.

This chapter presents all the necessary concepts for understand and apply the data
fragmentation in distributed databases, both in a relational and object-oriented ways.

Thus they are described the reasons for the using of fragmentation in the distributed
databases design together with the known general types of fragmentation and exemplified by means
of a database scheme. It is shown the fragmentation degree of a database and they are determined
the fragmentation rules that must be followed in the distributed databases design.

About the distribution data, there is no need to fragment the data. After all, in the distributed
files systems, the distribution is running on all the files. In fact, the data processing is done using
files allocation in the network nodes.

In the fragmentation, the main feature is to close the units of distribution. A relationship is
not a convenient unit for several reasons:

» First, the application views are usually included in the relations sets. Therefore, the

localization of the applications access is not defined on all the relationships but on a part of

them. So, it is natural to consider the subsets of relations as a distribution unit.

« Secondly, if the applications that have views defined on a given relationship, are on

different sites, then we can followe two alternative relationships with the entire unit of

distribution:
- First, the relationship is not replicated (copied) and stored on a single site;
- On the other hand., it is replicated on all sites or on some sites where there are the
applications.

The first variant requires a large and inefficient remotely access to the data. The second variant,
on the other hand, provides a replication inefficient (unnecessary), causing problems in the updates
implementation and might not be desirable if the storage capacity is limited.

Finally, the relationship decomposition into fragments, each treated as a unit, enables that some
transaction to be running competitive.

In addition, the relations fragmentation results typically from the parallel execution in a single
query by dividing into a multitude of subquerries that acts on fragments. Hence the fragmentation
increases the competition.

We have to remember and the disadvantages of fragmentation. If applications have conflicting
requirements that prevent the relationship decomposition into exclusive fragments, those
applications whose views are defined on more than one fragment may suffer degradation in terms
of performance. For example, it would be necessary to recover data from two fragments and it
could get through union or through junction, which would be a pretty expensive operation.
Avoiding this issue is an important feature of the fragmentation.

The second issue relates to the semantic data control, especially for the data integrity checking.
As a result of the fragmentation, the participating attributes in the dependency can be broken down
into different pieces which will be allocated on different sites. In this case, even the most simple act
of dependencies checking will run by the data tracking on a number of sites.

The horizontal fragmentation. There are two types of horizontal fragmentation: primary
fragmentation and derived fragmentation.

The factors that influence the fragmentation are: the structure of the database (global conceptual
schema) and the application characteristics (the predicate used, the locations where they are stored,
the frequency of access) - the "80/20" (20% of user querries use 80% of the data managed in the
database).

The applications (which we can consider as querries), which access a database, select a data
subset based on a predicate - that is a Boolean expression.

In the database design we should identify "groups" of tupls from the database that are accessed
together by applications / queries. Each "group" is defined as a predicate "minterm" which is
actually a combination of simple predicates. These "groups" then will become candidates for
horizontal fragments

Quantitative information: muinterm selectivity sel = (7) (the selectivity of a minterm mi) and
Jrequency of access = acc (¢i) (frequency of access query qi).

The horizontal partitioning algorithm is analyzed and outlined the steps to obtain necessary
minterm predicates for horizontal fragments:
Step 1. Building a set of simple predicates to be complete and minimal.
Step 2. Generating set of minterm predicate.
Step 3. Elimination of some determined minterm predicates.

The derived horizontal fragmentation is defined on a member relationship of a link
according to the selection operation specified on its own.

The vertical fragmentation. It is known that the vertical fragmentation of a relationship R
produces the fragments R1, R2,. . ., Rn, each of them containing a subset of R's attributes as a
primary key of R.

The objective of vertical fragmentation is to partition a relation into a subset of smaller
relationships so that users applications to run only on a fragment.

There are two types of approaches in the vertical fragmentation on the global relations:

Grouping: start by associating to each attribuie a fragment, and at each step, the unification of
[fragments until the criterion is met.

The division (partitioning) starts with a relationship and decides which partitions are useful,
according to the applications for attributes accessing.

The information required for vertical fragmentation. In design, the vertical fragmentation
requires the following information: which applications / queries use attributes and the frequency
with which these different applications / queries are running.

The first information will be stored into a matrix called the matrix created for the use of

attributes.

The main information about the applications relates to the frequency of access.

Let Q = (Q1, Q2.. . ., Qq) be the set of user queries (applications) which runs on the relation R
(Al. A2,..., An). Then, for every query qi and for each attribute Aj, we shall assign a value for the
attribute using, denoted by use (qi, Aj), and defined as:

use(qi, Aj) = { 1 if attribute A, is used by int query q,

0 else

The vectors use (qi, *) for each application are casy to define if the designer knows which
applications will run on the database.

The values for the attributes use are not generally sufficient to form the basis for attributes
sharing and fragmentation. This is because these values don't represent the difficult part of
frequency applications. The frequency measurement can be included in the definition of
measurement of attributes affinity, we can note it by aff (Ai, Aj), which measures the relationship
between two attributes of a relationship in accordance when they are accessed by applications.

The measuring of affinity between two attributes Ai and Aj of a relation R (Al, A2...., An) by
the compliance of a set of applications Q = (Q1, Q2.. . ., Qq) is defined as

aff(Aq, Aj) = > D ref,(q,) ace (q,)

k|me(qk,Ai)=1 A wse (g, A)=1 V5,

where:

- refl (gk) is the number of access on the attributes (Ai, Aj) for each running of the
application gk on the site S1

- and acel (gk) is the frequency of accessing the application defined as above but modified to
include in the definition the frequency for different sites.

The clustering algorithm brings together the value attributes of greater affinities and separate
those with lower affinity. The clustering algorithm receives as input the matrix AA, permutes lines
or columns of the matrix (whatever it permutes because the matrix is symmetric) and generates the
links affinity CA matrix (clustered affinity matrix). The permutation is made so as to maximize the
global affinity measure.

The generating links affinity matrix (CA) is performed on three steps implemented by the
algorithm GEN _CLUS ATR:

The initializing — it is placed and nominate an arbitrary column of the matrix AA into CA
matrix (in the algorithm it was nominated column 1)

The iteration - nominate a column between the rest of n-1 columns (i is the number of columns
already placed in CA) and it is placed on rest of i+1columns, it will be the place of the column that
brings the greatest contribution to the global affinity described above. This step will continue until
all the columns were placed.

The lines ordering — it is changed the positions of lines so as to be kept the symmetry.
The partitioning algorithm aims the partitioning (division) that means to find a set of attributes that
are free accessed (in most cases) by several distinct and various applications.

On the section 5.7 it is proposed an assessment of a data partitioning scheme in the distributed
relational databases. It is proposed an algorithm for the assessment of the fragments results from
the distributed database design stage and analize the algorithm on some proposed cases.

On every practical application for databases, a transaction does not require that all the usual
attributes of a relationship tuples to be recovered during a transaction. When a relationship is
vertically divided into data fragments the attributes stored in data fragments which are irrelevant
(are not accessed by the transaction), they added a cost of recovery and processing, especially when
the number of tuples involved in the relationship 1s very high.

In the distributed databases management systems, when a relevant attribute (an attribute that is
accessed in a transaction) is in different data fragments that are allocated on different sites, then it is
added an additional cost for access to these data. Therefore one of the desired characteristics for the
distributed databases management systems that we want to reach through the partition, is the local
accessible to any site. In other words, each site must be able to process local transactions with
minimal access to the data located on other sites.

Ideally, we want for any transaction to access only those attributes from a single piece of data
with minimal or no access to the relevant attributes of that segment. But it 1s impossible to reach
this case since the transactions have different and overlapping access to subsets of attributes of a
relationship. Moreover, the transactions are executed on different sites and some of the data
fragments that contain the relevant attributes of a transaction can be found on sites located at a
distance. The cost of transactions in a distributed environment consists of the cost of the local
transaction and the cost of remote transactions. Even if it is possible to replicate data to avoid the
cost of the process, for the first step we assume that we have no redundant data to avoid
uperimposed and to ensure data integrity and consistency and also the cost of additional storage.

Suppose that during the databases design, the partitioning step is followed by the data
fragments allocation when no superimposed data fragments obtained by partitioning are allocated
on different sites, possibly with some replication. So the proposed evaluator will assess the the
vertical partitioning schemes where the data fragments are no superimposed on the attributes (it
refers only to the primary key attributes). The primary key is reserved for each partition. It is
necessary to obtain the original relationship without losing or adding tuples.

The aim of attributes partitioning and their allocation on different sites, has reached the minimal
processing cost for any transaction initiated from any site. How the cost of transaction process has

two components, one relating to local processing and other remote processing, the partitioning
assessor proposed that measure the "effectiveness" of the vertical partitioning scheme, also has two
relevant terms: the term "the cost of local access to the irrelevant attributes™, and the term "the cost
of access to the relevant remote attributes™.

For simplify, we assume that a single access to data fragments corresponds to a unit cost, this
assumption can be easily relaxed if they are available more information about access methods,
network parameters, etc.. The time-cost access to irrelevant attributes measure the cost of local
processing transactions for the irrelevant attributes of the data fragments that are accessed remotly
by the transactions; we can note that this contribution to the cost of remote access to irrelevant
attributes is already included in the first term.

Since it is not known the data fragments allocation during the partitioning, it will be calculate
the second term assuming that the data fragments necessary for a transaction are located on
different sites. In the absence of any information relating to the strategies of transactions execution,
we can calculate the second term or by determining the average of all costs of remote access
obtained by executing the transaction on each site that contain a fragment necessary for the
transaction or by the assumption that the transaction will run for the first time on the sites
fragments. If it is available more information about the transactions strategies it can be introduced
too in the second term.

The section 5.8 proposes, similar to the previous section, an evaluation of a partitiong scheme
the data in the distributed object-oriented databases. The algorithm proposed in the previous section
it is adapted to apply in the case of distributed object-oriented databases, by studying some cases
according to the methods and specific attributes for the object-oriented approach.

On the relational approach the fragmentation works with algorithms that are appling to the
attributes distribution. Depending on the type of fragmentation it is necessary information about the
transaction frequency, the attributes use, or the predicate type. It is known that we need 4
information categories to reach an optimal design:

1. Information on the database that include global conceptual schema.

2. Information about the application: used predicate(for horizontal fragmentation), the matrix of
used attributes and the transactions frequency (for vertical fragmentation).

3. Information about the network communication.

4. Information about computers system.

However, the object-oriented approach to conceptual schema may be more complex and
different from features presented in relational approach, the additional aspects must are important,
such are the methods, hierarchical structure and complex attributes.

These new features increase the number of possible approaches for fragmentation. For example,
the classes partitioning may involve:

o Finding an "affinity" between classes (all objects of a class represents an entity, we can
not fragment the attributes and methods). "Affinity" between classes can be found in a
similar manner as attributes of the relational approach.

o The classes and objects unification and finding the "affinity" between attributes.

o The methods distribution by using the access frequency on their specific transactions

followed by the fragmentation of corresponding attributes accessed by those methods.

o Using an access frequency of the attributes for partitioning of a class objects followed

by the methods distribution.

o Tracking a hierarchical structure of classes

In the developing process of a fragmentation model, we studied a single important situation,
namely the use of simple attributes and simple methods.

In this category we have just a simple hierarchy, where the methods can use the attributes of
their class and / or their superclass. We have nested methods or objects as a type attribute. I used
other use matrices versus relational approache namely use transaction- method matrix - TMUM,
use matrix method-attribute - MAUM. The use matrix transaction-method - TMUM is the

frequencies matrix that indicate if the transaction use certain methods. The values used are zero or
one and they represent: use or not use the specified method. The use matrix method-attribute -
MAUM is the matrix that represents the number of invoking of a specific attribute in a single
execution of the method. There are three possible values:

- zero - indicate that a method does not access an attribute.

- one - indicate that a method read an attribute value (retrieve).

- two - indicate that a method read and write an attribute value (update).

In the proposed algorithm we must specify the following:

Step 1. To be specified into both matrices TMUM and MAUM all the methods used and the
attributes from the root to the end of the hierarchical database structure where this algorithm was
applied. If the classes from the higher levels exist, then for each of these classes we represent the
access frequency of attributes and methods as a sum of corresponding values. If a class has
subclasses, the amount will include all methods and attributes frequencies of that class and their
subclasses.

Step 2. Multiply each TMUM line with the corresponding frequency value of transaction.

Step 3. Multiply TMUM with MAUM.

Step 4. Apply an exhaustive search and calculate the value of partitioning evaluator to
select the best fragmentation scheme.

Step 5. Send the resulted fragmentation.

The aim attributes partitioning is to achieve a minimal cost process for a set of transactions
and for using their attributes. It is unlikely to obtain an ideal fragmentation scheme, where each
transaction accesses local only the necessary attributes and has no need to execute a remote access.
The objective function proposed here attempts to balance the cost of local access and the remote
access for a given transaction. According to the total cost of the transactions in a distributed
environment consists of two elements:

1. The first component, named the cost of access to local and irrelevant attributes
represents cost for accessing the irrelevant attributes when they access an object in a local site.

2. A second component, named the cost of access to relevant to remote attributes
includes the cost for accessing relevant attributes by a transaction from sites located at a distance.

Chapter 6, "The fragments assigning” presents some ways for allocating data in
distributed databases, and proposes an approach along the two-stage design of distributed
databases, namely the fragmentation and allocation of data. The presented algorithm is analyzed
together with a classical algorithm for horizontal fragmentation and it highlights based on some
experimental evaluations, it is more advantageous in terms of designing a distributed database, to
perform fragmentation data both horizontally and their allocation the network sites that are
designed that distributed database.

Chapter 7 ..Conclusions and further development " presents original contribution proposed
in this phd thesis, and some ideas for further development and improvement of algorithms that are
proposed in the thesis.

Personal contributions to this study in the approached field are:

The presentation of some classical algorithms for distributed databases fragmentation
depending on different types of information fragmentation, namely, in the situation primary
horizontal fragmentation it was presented the algorithm for horizontally partitioning, for the
derived horizontal fragmentation I presented the algorithm for derived horizontal fragmentation.

On the other hand, we presented the algorithms BEA (Bond Energy Algorithm) and BVP
(Vertical Partitioning Binary) for vertical fragmentation .

Proposing ways for assessing of the partitioning data scheme in a distributed relational
database - EP algorithm.

Proposing ways of assessing the partitioning data scheme in a database distributed object-
oriented - EPOO algorithm.

Proposing an heuristical approach for the horizontal fragmentation and allocation of
fragments in the same phase of the design of databases distributed object-oriented. Comparative
study between this approach and an algorithm proposed previously.

The studying of the performance of the algorithm proposed in a study on different data
test and the analysis of the results with highlighting the fact that an algorithm is useful in
optimizing the design of databases distributed relational fragmented vertically which should not be
stated at the outset the total number of partitions. This study was presented at the International Joint
Conferences on Computer, Information, Systems Sciences, and Engineering (CISSE 2007)
Conference, Conference Proceedings book, 2007, University of Brigeport, USA, and published in
Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering,
Springer Science, ISBN 978-1-4020-8734-9 e-ISBN 978-1-4020-8735-6.

The studying of the performance of the algorithm proposed in other study on different test
data and the analysis of the results with evidence that an algorithm is useful in optimizing the
design of databases distributed object-oriented vertically fragmented which should not be stated at
the outset the total number of partitions. In this paper we stressed that it i1s an adaptation of the
algorithm in previous work, from databases to distributed relational databases distributed object-
oriented. This study was presented and published at the 9th International Conference Carphatian
Control Conference - ICCC 2008, Sinaia, ISBN 978-973-746-897-0.

The annexes include the distributed database schema used as the example throughout the
thesis, followed by the the database structure used in experiments, and the component tables
structure and the algorithms sources implemented in C + +.

In this thesis, I presented a general overview on the vertical data partitioning. This study
highlights the possibility of using the affinity matrix of the attributes in partitioning algorithms. The
use of an objective function from the grouping (clustering) methods to the partitioning algorithms it
is presented by an effective implementation. Using this algorithm it can be evaluated and verified
the other vertical partitioning algorithms that use as input a matrix for using attributes. This may
develop heuristical algorithms that provide the possibility of using this objective function
evaluation. This algorithm can be casily modified to include other information taken from the
database designer, such as transactions types (data access or update data), information on data
allocation and cost of data transmissions.

I proposed myself to develop further and others heuristical algorithms based on the approach
proposed in this thesis and to integrate this algorithm into a more complex application that will help
the distributed database designer to choose a proper way and the most effective implementation of
information managed with a distributed database.

