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1. Introduction

The present paper, concerning the title, refers to the study of integrals and series,
being at the border between the mathematical analysis and informatics. The integrals
and the series are used in various domain of science and technique, in mechanics, physics,
chemistry, engineering, aeronautics, astronomy, economy, biology, etc. For example, the
elliptical integrals are used for the dynamics of a material point subjected to connec-
tions, in supersonic aerodynamics, for the expression of the lift factor for of a thin delta
wing with subsonic edges of attack; the logarithmic integrals fol p(x)-log (log (1/z)) dx,
with p (x) as rational function (see [1], [2]), are used in the statistical physics and in the
lattice theory; the abelian integrals are used in the differential geometry; the integrals of
the form fol 2" (1£x) " -log" (1 + z)-log’ zdz, [3] have values established depending on
the values of zeta function, a function used in quantical physics. The BBP-Ramanujan,
type series, hypergeometric, eulerian, various harmonic subseries are used for the cal-
culation of some constants with high accuracy, in different basis of enumeration, for
example the number 7, which squeezed the minds of many mathematicians since the
beginning of times, or the number exp (1), or the values of the zeta function, in its
various forms, [3], etc.

2. Integer relation and the PSLQ algorithm

In this chapter I defined the term of integer relation of a given vector and I discussed
the evolution of various algorithms (the Euclid algorithm, LLL, HJLS, PSLQ, Multi-
Pair) which can be obtained. I adapted the algorithms for the Maple 7 language in order
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to be used. Their source programme is to be found in Annex B, together with some
of their applications. At the end of the chapter there are indicated several alternative
software where can found implementations of these algorithms.

We note K the real, complex or quaternion numbers and with O (K) the ordinary
integer numbers, Gauss integer numbers or Hamilton integer numbers.

Definition 1. A vector z = (x1, %2, ..., z,,) from K" we say that it is in integer relation
if there is a vector m = (my, ma,...m,) € O (K)",m # 0, so that

(1) mix, + mos + ... + myx, = 0.
The vector m different from zero is called integer relation for x.

Examples:
1) z=(2/3, 1/2, 5/6), m= (1, 2, —2);
2) z=(a, m, e, 1), m= (=72, 54, —63, 8), where o« = —37/4 — 7e/8 4+ 1/9.

3. Some applications of the integer relation

The chapter starts with the justification for using the various algorithms in deter-
mining the integer relation, as well as accompanying them with rigorous demonstrations.
The relations, discovered with the computer aid can be true up to a number of decimals,
that it is imposed their rigorous demonstration. Though approximate relations can be
used in other domains of the science (in physics, economy, geography, in various statis-
tical analysis of trend), where a sufficient number of decimals is enough. An eloquent
example is the use of the number 7, which in antiquity, depending on the needs, it was
approximated as an integer and then, once the need for precision increased, and as the
society developed, it started to be used with more and more precise decimals. The first
calculation algorithm for this number was given by Arhimede din Siracusa (287-212 b.
C.) who used the exhaustive method of Fudoxiu (34 10/71 < m <34 1/7).

There are analyzed several applications of the integer relation: the recognition of
certain numerical constants, finding the minimal polynom and obtaining the identities.
With the recognition of numerical constants dealt various mathematicians and computer
scientists performing software. Such software is Inverse Symbolic Calculator (ISC)
which can be found at : http : //oldweb.cecm.s fu.ca/projects/ISC/ISCmain.html.

In the present paper I used a software package performed by Alain Meichsner in a
Maple version, which I updated it for the version Maple 7, and which offers a lot of
facilities. The package contains three lists of constants B;, Bs, B3, which are being
modified depending on the needs of the problems we are solving. Thus, I found the
values and then I demonstrated for several logarithmic integrals, an exponential integral,
a class of integrals and one of trigonometric series which contain the function sinc (z) =

x~'sin (z). There are being analyzed two double integrals, proposed by the American
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Mathematical Monthly Magazine, the problems number 11275 ’and 11277 from 2007,
in the demonstration of which there are particular cases of some generalized integrals
in chapter 4. Also for the "Recognition of numerical constants" there are studied the
binomial series of Lehmer and the ones of Apéry type. In 1979, Roger Apéry used such
a series to demonstrate the irrationality of the constant ¢ (3) = >°°°,1/n?, and as a
result it was called the Apéry constant. Finding the minimal polynom is an immediate
application of the LLL algorithm, being useful in algebra. We choose two significant
examples which we accompanied with demonstrations.

The subchapter "Obtaining identities" has as examples two types: Machin type
identities and ladder type identities , used in chapter 5, in order to obtain sums of
BBP-Ramanujan type. The Machin type identities are integer linear combinations of
values of the arctangent function. The name comes from the one who obtained for
the first time such an identity, in 1706, for a quick calculation of the m number and
using more decimals. We realized a few software in Maple 7 in order to trace them
and we obtained lists of such identities. Their demonstrations is elementary. The
ladder type identities are integer linear combinations of values of the polylogarithm
function Li, (z) = ) o, 2" /r", with |z| < 1, and produced by values of zeta functions
and exponents of the natural logarithmic function. Such types of identities have been
discovered for the first time by L. Euler in 1768 and by J. Landen in 1780, and then
the theoretical study was done by L. Lewin in 1991. With the help of PSLQ algorithm
I found lot of such expressions, and they can be found in Annex D.

Henceforth are exemplified two identities with series: the BBP series and the Bill
Gosper formulae. The first one was discovered by experimental methods, with the
help of PSLQ algorithm, by David Bailey, Peter Borwein and Simion Plouffe in 1995

The value of this series is given by the fact that it helps at the calculation of =
number, in hexadecimal basis, starting from a given hexadecimal, and there is no need
to know the precedent ones. In Maple, I realized a software for the calculation of a
great number of hexadecimals for 7 number, based on this series. It can be found in
Annex C. After discovering the BBP series, there appeared other of this type in order
to find some methods of calculation for other constants, using as many as possible exact
decimals (see chapter 5). The Bill Gosper formulae is a binomial series which can be
used for the calculation of 7. A demonstration of this formula uses the Beta function
B(r,s) = fol 271 (1 — 2)* " dr and values of the polylogarithmic series transforming
the series into a rational integral.

4. The calculation of some integrals

The chapters 4 and 5 are the center of this paper, the first one refers to study of
integrals and the second one is reserved for the series. The chapter 4 encloses three im-
portant subchapters: the integration of elementary functions, an application of Dirichlet
L series and the use of multiple zeta function.



4 THE CALCULATION OF SOME INTEGRALS 4

4.1. The integration of elementary functions

This subchapter is an introduction which refers to the calculation of integrals where
are mentioned the results obtained by Niels H. Abel, Joseph Liouville, D. Mordukhai-
Boltovskoi and Joseph-Fels Ritt, as well as cases where certain integrals are elementary
(for example, Cebasev integral), or they are not elementary (for example, elliptical in-
tegrals or some exponential or logarithmic integrals). In the following two subchapters
I studied types of logarithmic integrals which values depend on the values of certain
hypertranscedental functions: gamma function (hipertranscedentality demonstrated by
O. Holder, in 1887) and zeta function (D. Hilbert, in 1900, demonstrated the hyper-
transcedentality of the Riemann zeta function).

4.2. An application of Dirichlet L series

For the integrals of the following type

2) /Z” 11X_xq) 11n(1n%)dx,

where x_, is Dirichlet character (mod ¢), which I presented at the 6" Congress of
Romanian Mathematicians in Bucharest held on the 28" June - 4" July, 2007 [1], as
well as in [2], there can be found with the help of the computer various expressions in

the values of the gamma. For example,

V3 / V33t Xoasis () 2!

—[_15 3 = Inln —dx
™

(1 —21?) x
! V3(2® — 2T+ 2% — 2+ 1) 1
= Inln —dz
o T(@24+x+1)(a®—a"+a5—at 423 —x+1) x
1. (/3°0'2(2/3)
) 2474/5

For these types of integrals I demonstrated two theorems which justify these formu-

lae:

Theorem 2. If x_, is an odd primitive character (mod A) then :

A-1 )
Y amat
(3) ]_A:/ =l Inln —dz

0 1—aA x
T V3T2(2/3 .
_ min (H52) if A=4

A-1
N {ln27r— 7;1 X_a (r)InT (%)} if A>4
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Theorem 3. If x_, A is an odd character (mod q) induced by an odd primitive char-
acter x_ (mod A) then :

q—1
1 Zl X—q;—A (n) Inil 1
(4) I_4-a= /0 T Inln Edaz

= | Ia+L(1,x_n) Z —X_A(p)l?pl; H (1—X_A<p)),

pla P—=X-a oa p
p prume p prime
where
7/ (3v/3) if A=3
/4 if A=4
(5) L (]-a X—A) = A—l/ ’

ﬁz_:ln-x_A(n) if A>4

As we can see in the expression of the function from which we calculate in the
integral there are found the values of the character y of Dirichlet. That is way it is
imposed to know the values for this function. We built a software named Lag, in Maple
7, which helped us find these values that we grouped in several tables in annex A from
this paper. The tables contain the values of the primitive modulo characters |A| < 40
and the ones for the modulo inducted odd character |¢| < 40, by the primitive modulo
characters |A| < 40 . The method used to find the formulae, using the computer, is
based on the package presented in subchapter "Recognition of the numerical constants"
from chapter 3. Thus, we obtained a list of integrals which can be extended at any
moment. Similar integrals where studied by V. Adamchik, with applications problems of
statistical physics and in the theory of lattices, as well as Baxter, Temperley and Ashley,
in problems for coloring the graphs. Adamchik discovered formulae which contain the
values of the digamma function ¢ (s) = I"(s) /I'(s) and for the partial derivate of
Hurwitz zeta function (% (s, 2) = 9¢ (s, 2) /ds, where ( (s,2) = 2% (n + 2)~*, with
Res > 1, 0 < z < 1. Medina and Moll discovered other formulae which I arranged
more structured . These are expressions which contain the polylogarithmic function
Li(s,2) = >.°°  2"n~*, |z| < 1 and its partial derivate Li*?) (s, 2) = O Li(s, x)/0s.

4.3. Using the zeta multiple function for the calculation of some integrals

In this last subchapter I studied integrals of the following type

Y(—log(1 £z F .,
(6) Ilgil,r,m /0 ( a i P& ) 2" (—log a:)l dz,
" 1 xkr+k—l l
(7) irmpe = /0 Az (—logz) du,

where k, [, r, m are integers, obtaining expressions which contain values for the multiple
zeta function of Euler-Zagier and for extended multiple zeta function (see [3], [5]):
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Definition 4. We call multiple ¢ function a of Euler-Zagier the complex function :

(8) Glotsmms) = 3 S R

nit - ngt..-my
ni>na>nz>...>n;>1

where the addition is made after all integer values ny > ng > n3 > ... > n;, with [ € N*.

Definition 5. We call multiple extended ¢ function the complex function:

ot o2 ot
N . B Mgt g B
(9) (; (51,82, .,81;01,02,...,07) = g TR <, where 0; = £1.
ni't - ngt .oy

ni>na>nz>..>n;>1
In particular:

~ ool o
(10) Cl (817827-"781) = Z ! : :

n|81| . n|52\ L nlsz\ ’
ni>ng>ng>..>n>1 Y1 2 l

where | € N* 51,59, ..., 5 € Z*,0; = signum (s;).

Particular cases of these expressions were known by L. Euler, as they contained only
values of the zeta function in a single variable. They can be found in I. S. Gradzhteyn
and I. M. Ryzhyk book , for example

1 1 N 2
(11) / o2 logzder = (;(-2) = —%, (formula 4.231.1)
0
1 1 7T2
(12) / 1 logxdr = —((2) = R (formula 4.231.2)
o 1—x

The Euler-Zagier sums, which appear in the definitions of zeta functions, occupy an
important role in the theory of nodes and in the theory of quantic fields. The formulae
connected to these integrals can be found with the help of PSLQ algorithm or with the
package for identifying the constants realized in Maple. The demonstrations are given
in the form of theorems or corollaries:

Theorem 6. If k,r and | are nonnegative integers, k,l,r > 0, [ > 1.,then:

k
- [ Clstzn)
k,lr1 0

2" (—log x) dx

= FkIl! 3 = (F™

1 .
n1>n2>n3>”‘>nk+121 (nl + r *Ng-Ng - ... nk+1

1+2x

Corollary 7. Suppose that k and | are integers with, k > 0,1 > 1. Then :

s / (~log (1 & 2))"
k,1,0,1

o (Sloga) do = FRING, o (F (1+ 1), {1});

and

1 k
(—log (1 +x)) ~
1207071 = /o 1tz dr = —k!Cyyq (-1, {1}k)'
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Corollary 8. Suppose that k and | are integers with, k > 0,1 > 1. Then :

U(—log (14 z))F
151,1,1 = / ( %2:56 ) -x(—loga:)l dx
3 (FD)™
= k! F((+1),{1},)* ’
Cron (F(L+1),{1},) Z T —
and
1 k
(—log (1 +x))
II:O,LI:/O 2 - xdx
~ (—™
=k Copr (=1,{1},) + Z

n1:n2>n3>...>nk+121( 2 + ) 2 3 k+1

In particular

| N
I(i,u:/o 1:l:$-:c(—loga:)ldx:l! (C(:F(l+1))ﬂ:1), where [ € N*

1
1 ~

og (1 —
I, = _/ —Ogl(_ xx) o (—loga:)l dx
0

_ (Q(H—l,l)—l—l—i—Zi:C(i)),WhereleN*

1
log (1 + ) !
I, =— ——~ .z (-1 d
1,1,1,1 /0 1+ x (—logx) dx

- ~ I+1 ~
— ! (@ (=1L + 1+ 1428 (-1)+ Y ¢ (—i)) ,where | € N
Corollary 9. Let [ and r be integer such that, [ > 1, » > 0. Then:

T

19) Ty = [ 7y (Cog)de =0 (z -3 T ) |

ni=1 nl

and

It . = /1 z de = (=) [ (-1) - j: (=™
0707T71 0 1 _'_x nl .
Theorem 10. Let k r,and | be integers such that, k,r > 0, [ > 1. Then:
+ ! kE !
Fia= [ (Clog(2a) o (-loga)tds
0

— El! > (F1)™ :

I+1
n1>na>ng>..>n,>1 (nl + T + 1) Ty - Ng - Ng - ... - N
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and

1
Lm0 = /0 (—log (1+z))* - 2"dx

(=™
= |
& Z (ny+7r+1)-ny-ng-ng-

ni>na>n3z>...>np>1

In particular

1 o Ly
Ii_O,r,O = —/ log (14 z)-2"dx = Z (=1

0 nl:l(m—i—r—l—l)-n

:{ =2-log(2) + S,

_S,

7‘+1 i
where S, = :11 Z;l Gk and p € Z.

it r=2p
it T=2p+1

Theorem 11. Let k,r,l and m be integers with, k,l,v > 0; m, [l > 1. Then:

r

-
i=0
Corollary 12. If] is an integer, [ > 1, then:
1 l o0 1
oo == | Tog(1= ) (~loga)/ do = Y

A

while for 1 > 0 :

1 00 _1 n
Higo=— [ Tog(1+2) (-loga)' dr = -0y —3

(711 + 1)l+1

ni=1

= /01 (_1(01g£1x;m$))k o (~loga) dv =3 (~1)' (z)jl_’“ o

[+1-> ¢

o)

Y

=1 <l+1+&(—1)+2&(—z’)>.

Theorem 13. Let [,m,r, k be integers such that, [, m, r > 1, k > 2. Then:

J:I:

Corollary 14. Ifl is an integer, [ > 1. Then:

1 xk?‘-Fk 1 1 n
lrmk_/o m (—logx) dx = kH_lIOlrm

Loy 1 1 -~
Jﬁ),m:/o (—loga)! dz = s T01 = Fopr I (F (14 1))

1422
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Theorem 15. Let r ,[, my; and my be integers with, [, mi, ms > 0. Then:

1 l mi me
" (—logz) Z - 2 : +
Il,r,ml,mg - /0 (1 _ x)ml (1 + x)mz dx = p Ai‘ZO,l,T,i + = Bj]O,l,nj ’

where A;, B; e R, i € {1,2,...,my}, j € {1,2,...,ma}.

Corollary 16. If [ is an integer, [ > 1. Then:

| 1,
Lip11 = /0 2 (—logz) do = B (]o,z,o,l + 1&,0,1)
1 .
p— ' —_— — JE—
! (g(z+1) C(~1 1))
1
.yt (1 - —%1) CU+1).

Corollary 17. If [ is an integer, [ > 1. Then:

N

1 T .
Il,l,l,l = . (— IOg I) de =
0

1 2 (Igya1 +1g011)
1

:%z! (Cu+1)+(=1-1) = 1 +1).

With the help on this type of integrals there can be calculated, using Maple, quickly,
and with high precision, the values ¢, (= (I +1),{1},), k,l € Z, k > 0,1 > 1. For
example,

-log® zdx

(14) ¢,(6,1,1,1) = (—1>3+5 /1 10g3 (1)

T (4)T(6) 1 -2
~ .000106090228910217520514055954914551 7589881...

and

(15) ¢, (—6,1,1,1) = -log® zdx

(_1)3+5+1 Uog® (1 + )
F(4)F(6)/0 1+z

~ .000023721805349405091926870095513763279997383...
An interesting application of integrals from this subchapter is the one studied by

Sondow and Sergey Zlobin, with the help of which they discovered calculation formulae
for some integrals on polytopes.

5. The calculation of some sums

In this last chapter I analyzed several types of series: the BBP-Ramanujan type
sums in connection with the hypergeometrical series, the Euler type sums and the
Kempner-Irwin type harmonic subseries.
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5.1. The BBP-Ramanujan type sums

We reunited the two types of series, tip BBP type and Ramanujan type, for which we
grouped several demonstration methods: using the Machin identities, BBP series which
sums are logarithms or using the identities which contain values of the polylogarithmic
function.

Definition 18. We call series of BBP-Ramanujan type , the hypergeometric series of
the following form

(16) S ((al)n (az),, - (ap), P (n)

b), (b2),, - (bg), @Q(n)’

where u =1 oru=—1; z,a;,b; € C, i € {1,2,...,p}, j € {1,2,...,q}; P,Q € C[X], Q
does not have positive integer roots and with L. A. Pochhammer symbols:

F(a—i—n).

(17) (a),=a(a+1)-..(a+n—1)= I (a)

We call the number x base.

These series can be discovered using PSLQ algorithm. For the binomial extension
of BBP series there are integrals with the same sum, which can be found using the
computer with the same PSLQ algorithm. I presented the algorithm used for obtaining
some constants in a given base, starting from a given position of the numbers after the
coma.

5.2. Hypergeometrical series

The hypergeometric series have been studied by many mathematicians (Mary Ce-
line Fasenmyler, R. W. Jr. Gosper, Doron Zeilbenger, etc.) building various algorithms
of calculation which can be found implemented into the EKHAD package, made in
Maple. These are particular cases of BBP-Ramanujan series.

Using the hypergeometric series there can be obtained expression of the BBP-
Ramanujan type series. Thus. applying I Maple for the BBP sum or for the Apéry
binomial series

>sum((4/(8*n+1)-2/(8*n+4)-1/(8*n+5) - 1/(8*n+6))/(16 n), ..infinity);
>(5/2)*sum(((-1)"(n-1))/(binomial (2*n,n)*n"~3), 1nf1n1ty)
we obtain

(18) Zoo 1 4 2 1 1
= — - — -
k=116F \8k+1 8k+4 8k+5 8k+6

Y 1,188 1 271 9,713 39
15 5F4|: 7 134 38 98 7E:| 39312 5 4[ 174118 212 58 ’E:|
408728 87147872
17 11 21 5
b o | i g
20944 b 29 1% g
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5= (="' 5 1,1,1,1 1
19 3) == i = — 4F ==
(19) <G 2Zn:1 (" ns 4" 3{2,2,3/2’ 4}
5.3. Euler type sums

The last two subchapters refer to two types of series with slow convergence. The
first type, the Fuler type sums, is made up of double series which contain harmonic
numbers. Due to the slow convergence for the calculation as precise as possible there is
needed a long time and computers with high power of calculation. Therefore, Jonathan
M. Borwein, David H. Bailey, Roland Girgensohn, succeeded to find various expressions
for these formulae using the PSLQ algorithm. In the present paper it is given a method
of demonstration based on a function called kernel and on Cauchy theorem of residues.

5.4. Kempner-Irwin type series

The series that I called tip Kempner-Irwin type, are subseries of the harmonic one.
The terms of these subseries are the inverses of some numbers which respect a condition
upon the numbers from which are made up in a given base. Part of the result in this
chapter can be found in [4].

Definition 19. Let X,, be a string of m > 0 digits. We denote by S~ the set of all
the positive integers that do not contain X,,, in their decimal representation, by S* we
denote the set of all positive integers that contain X,,, and by S® the set of all positive
integers that contain X,, exactly p times. We will also make use of the set S(<P) of
all positive integers that contain X,, no more than p times and SZP), of all positive
integers that contain X,, at least p times.

The Kempner type series are the series of one of the following form:

(20) \IJI;X,,L = Z Sik’ \I}Z;Xm = Z Sik’

seS— sesS+
() 1 <p) 1
(21) Wi, = 2o W= X W
s€S®) scS(<p)
1
(22) v o= > - wherek e N,
SGS(ZP)S

If we consider a set X, of strings of digits, and a set S, of numbers that meet different
conditions, expressed in on of the five forms above, The series

1
(23) Upx =Y —.  wherek € N*,
S

we call Irwin type.

It is known that the harmonic series is divergent. Despite all this some Kempner-
[rwin series are convergent (for example W g, = > o 1/s, \Ifgz;’,?g,, = D scstm 1/5,
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\I/Fg) = Y ses(<m 1/5). For the calculation of these series Robert Baillie made an

algorithm implemented in Mathematica. It is remarkable the fact that in the binary
base these types of series have a rapid convergence and can be easily calculated and
with a high precision in Maple. I extended the Kempner-Irwin series to Kempner-Irwin
series in the logarithmic form, as they are also convergent, as for example

1
(24) Qg = Y o~ 341067...

se€ES™

where S~ is the set of all positive integer numbers which do not contain the digit 9.
Toward the end of the chapter it is studied the convergence of some strings of
Kempner-Irwin type sums:

Theorem 20. a) Let X,, a string with m digits having period p, i.e.
(25) Xy =" dids...dyd1ds...dy...dvdy...d), 7.

~
m=kp digits

Let Wy sum of 1/s where s does not contain a string X,,. Then
Ty 107
26 li = =
(26) meso 10m 107 — 1
b) Let X,,, = "dydy...dy,” a string with m digits non-periodical. Let ¥ ~sum of 1/s
where s does not contain a string X,,. Then

log 10.

-

27 lim —Xm — Jog 10.

(27) mse 10m 08

Theorem 21. a) Let X,, a string with m digits having period p, i.e.

(28) Xn=" Elld2...dpd1d2...dp...dldg...dp 7.
m:k;rdigits

Let Q% sum of 1/ (slns) where s does not contain a string X,,. Then

o 107
29 I S — .
(29) mae 107 In 7= 107 — 1

m—1

b) Let X,, = "dyds...d,,” a string with m digits non-periodical. Let Oy, ~sum of
1/ (slns) where s does not contain a string X,,. Then

QO 107
(30) lim LiXm 0

meoo 107 In 22— 107 — 1

1.

m

The folowing theorem is demonstrated in [4]:

Theorem 22. The string <\If¥2897,> decreases and lim,_, \1157,“389,, ~ 22.2176459...,
’ reN* ’
where
(31) o) = !
1,789” p
ses8(r)

and S is the set of positive integer numbers which end in 8 ’and contain 789" of
exactly r times.
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