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Introduction

In the last years, residuated structures became popular in computer science since
it was understood that they play a fundamental role in fuzzy logics. We recall that
the origin of residuated lattices is in Mathematical Logic without contraction. They
have been investigated by Krull ([70]), Dilworth ([38]), Ward and Dilworth ([97]),
Ward ([96]), Balbes and Dwinger ([2]) and Pavelka ([80]).

Apart from their logical interest, residuated lattices have interesting algebraic
properties (see [7], [21], [38], [47], [69], [79], [96], [97]). As Idziak proved in [58],
that the class of residuated lattices is equational. In literature, these lattices have
been known under many names: BCK- latices in [52], full BCK- algebras in [70],
FLew- algebras in [78], and integral, residuated, commutative l-monoids in [8].

Basic Fuzzy logic (BL from now on) is the many-valued residuated logic intro-
duced by Hájek in [52] to cope with the logic of continuous t-norms and their residua.
Monoidal logic (ML from now on), introduced by Hőhle ([56]), is a logic whose al-
gebraic counterpart is the class of residuated lattices; MTL algebras (see [41]) are
algebraic structures for the Esteva-Godo monoidal t-norm based logic (MTL), a
many-valued propositional calculus that formalizes the structure of the real unit in-
terval [0, 1], induced by a left–continuous t-norm. MTL algebras were independently
introduced in [43] under the name weak-BL algebras.

We recall ([43]) that a non-commutative residuated lattice (called sometimes
pseudo-residuated lattice, biresiduated lattice or generalized residuated lattice) is an
algebra (A,∧,∨,¯,→, Ã, 0, 1) of type (2, 2, 2, 2, 2, 0, 0) satisfying the following con-
ditions: (A,∧,∨, 0, 1) is a bounded lattice; (A,¯, 1) is a monoid and x ¯ y ≤ z iff
x ≤ y → z iff y ≤ x Ã z for any x, y, z ∈ A.

Pseudo BL− algebras were introduced in [39] as a non-commutative exten-
sion of Hájek’s BL−algebras. Pseudo BL−algebras are bounded non-commutative
residuated lattices (A,∧,∨,¯,→, Ã, 0, 1) which satisfy the pseudo-divisibility con-
dition x ∧ y = (x → y) ¯ x = x ¯ (x Ã y) and the pseudo-prelinearity condition
(x → y) ∨ (y → x) = (x Ã y) ∨ (y Ã x) = 1. Depending on the above conditions,
there are two directions to extend pseudo BL−algebras. One direction investigates
the (bounded) non-commutative residuated lattices satisfying the pseudo-divisibility
condition which were studied under the name (bounded) divisible pseudo - residu-
ated lattices or bounded Rl - monoids. The second direction deals with (bounded)
non-commutative residuated lattices with the pseudo-prelinearity condition, that is,
pseudo MTL− algebras.

So, pseudo MTL− algebras are non-commutative fuzzy structures which arise
from pseudo t-norms, namely, pseudo BL−algebras without the pseudo-divisibility
condition.

The main aim of this thesis is to characterize the lattice of congruence filters for
a residuated lattice, the archimedean and hyperarchimedean residuated lattices and
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2 Introduction

to develop a theory of localization for MTL -algebras and to extend this theory to the
non-commutative case of pseudo MTL-algebras (using the model of localization for
BL and pseudo BL-algebras, see [18] and [20]).

A remarkable construction in ring theory is the localization ring AF associated
with a Gabriel topology F on a ring A (see [45]); for certain issues connected to the
therm localization we have in view Chapter IV : Localization in N. Popescu’ s book
[86].

In Lambek’ s book [74] it is introduced the notion of complete ring of quotients
of a commutative ring, as a particular case of localization ring (relative to the dense
ideals).

Starting from the example of the ring, J. Schmid introduces in [90], [91] the
notion of maximal lattice of quotients for a distributive lattice. The central role in
this construction is played by the concept of multipliers, defined by W. H. Cornish
in [32], [33].

Using the model of localization ring (see [45]), in [48] is defined for a bounded
distributive lattice L the localization lattice LF of L with respect to a topology F
on L and is proved that the maximal lattice of quotients for a distributive lattice is
a lattice of localization (relative to the topology of regular ideals).

The same theory is also valid for the lattice of fractions of a distributive lattice
with 0 and 1 relative to an ∧-closed system (see [10]).

A theory of localization for Hilbert and Hertz algebras was developed in [12]; for
the case of Heyting algebras see [34], for the case of MV and pseudo MV -algebras
see [14], [22], [82], for the case of BL and pseudo BL-algebras see [18], [20], [82]
and for LMn-algebras see [25].

For some informal explanations of the notion of localization see [76], [87], [88].
All original results from this thesis are contained in [23], [63], [64] şi [83]-[85].



Chapter 1 : Reziduated lattices

The first chapter contains some results relative to residuated lattices.
All original results are contained in [23], [64] şi [85].
A residuated lattice is an algebra

(A,∧,∨,¯,→, 0, 1)

of type (2,2,2,2,0,0) equipped with an order ≤ satisfying the following:
(LR1) (A,∧,∨, 0, 1) is a bounded lattice;
(LR2) (A,¯, 1) is a commutative ordered monoid;
(LR3) ¯ and → form an adjoint pair, i.e. c ≤ a → b iff a¯ c ≤ b for all a, b, c ∈ A.

In this thesis, the symbols ⇒ and ⇔ are used for logical implication and logical
equivalence.

ÃLukasiewicz structure, Produs structure, Gődel structure and Boolean algebras
are examples of residuated lattice. Also, we present in my thesis two examples of
residuated lattices which are not distributive lattices.

The class RL of residuated lattices is equational ( see, [58]).
A residuated lattice (A,∧,∨,¯,→, 0, 1) is called BL-algebra, if the following two

identities hold in A :
(BL1) x¯ (x → y) = x ∧ y (divisibility);
(BL2) (x → y) ∨ (y → x) = 1 (prelinearity).

ÃLukasiewicz structure, Gődel structure and Product structure are BL− algebras
but not every residuated lattice, however, is a BL-algebra (see [93], p.16).

A residuated lattice (A,∧,∨,¯,→, 0, 1) is an MV -algebra iff it satisfies the ad-
ditional condition: (x → y) → y = (y → x) → x, for any x, y ∈ A.

We denote by B(A) the set of all complemented elements of the lattice L(A) =
(A,∧,∨, 0, 1), where A is a residuated lattice.

We recall the basic definitions, examples and rules of calculus in a residuated
lattice and we prove new results about these algebras. Also we present the connection
between residuated lattices and Hilbert algebras.

For a residuated lattice A We denote by Ds(A) the set of all congruence filters
(deductive systems) of A. The lattice (Ds(A),⊆ ) is a complete Brouwerian lattice
(hence distributive), the compacts elements being exactly the principal ds of A.

For two deductive systems D1, D2 ∈ Ds(A) we define

D1 → D2 = {a ∈ A : D1 ∩ [a) ⊆ D2},
so, (Ds(A),∨,∧,→, {1}, A) become a Heyting algebra, , where for D ∈ Ds(A),

D∗ = D → 0 = D → {1} = {x ∈ A : x ∨ y = 1, for every y ∈ D}.
Theorem 1.39 characterizes the residuated lattices for which the lattice of con-

gruence filters is a Boolean algebra :
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4 Chapter 1 : Reziduated lattices

If A is a residuated lattice, then the following assertions are equivalent:
(i) (Ds(A),∨,∧,∗ , {1}, A) is a Boolean algebra;

(ii) Every ds of A is principal and for every a ∈ A there exists n ≥ 1 such that
a ∨ (an)∗ = 1.

For the distributive lattice Ds(A) we denote by Spec(A) the set of all prime
deductive systems of A and by Irc(A) the set of all completely meet-irreducible
elements of Ds(A) .

In my thesis we put in evidence new characterizations for the elements of Spec(A)
and Irc(A) in Proposition 1.46., Corollary 1.47., 1.48. and Theorem 1.49. :

For a proper deductive system P ∈ Ds(A) the following conditions are equivalent:
(i) P ∈ Spec(A),

(ii) Pentru orice x, y ∈ A\P there is z ∈ A\P such that x ≤ z and y ≤ z,
(iii) If x, y ∈ A and < x > ∩ < y >⊆ P, then x ∈ P or y ∈ P
(iv) For every x, y ∈ A/P, x 6= 1, y 6= 1, there is z ∈ A/P, z 6= 1 such that x ≤ z

andy ≤ z,
(v) For every D ∈ Ds(A), D → P = P or D ⊆ P.

Relative to the uniqueness of deductive systems as intersection of primes we
prove that this is possible only in the case of Boolean algebras :

Theorem 1.51. If every D ∈ Ds(A) has an unique representation as an inter-
section of elements of Spec(A), then (Ds(A),∨,∧,∗ , {1}, A) is a Boolean algebra.

A deductive system D ∈ Ds(A), D 6= A is called maximal relative to a if a /∈ D
and if D′ ∈ Ds(A) is proper such that a /∈ D′, and D ⊆ D′, then D = D′.

About these deductive systems we have the following results:
Corollary 1.53. For any a ∈ A, a 6= 1, there is a deductive system Da maximal

relative to a.
Theorem 1.54. For D ∈ Ds(A), D 6= A the following are equivalent:
(i) D ∈ Irc(A);

(ii) There is a ∈ A such that D is maximal relative to a.
Theorem 1.55. Let D ∈ Ds(A) be a deductive system , D 6= A and a ∈ A\D.

Then the following conditions are equivalent:
(i) D is maximal relative to a;

(ii) For every x ∈ A\D there is n ≥ 1 such that xn → a ∈ D.

and
Corollary 1.56. For D ∈ Ds(A), D 6= A the following conditions are equivalent:
(i) D ∈ Irc(A);

(ii) In the set A/D\{1} we have an element p 6= 1 with the property that for
every α ∈ A/D\{1} there is n ≥ 1 such that αn ≤ p.

A deductive system P of A is a minimal prime if P ∈ Spec(A) and, whenever
Q ∈ Spec(A) and Q ⊆ P, we have P = Q.

We obtain that
Propozition 1.57. If P is a minimal prime deductive system, then for any

a ∈ P there is b ∈ A\P such that a ∨ b = 1.
An element a of a residuated lattice A is called infinitesimal if a 6= 1 and an ≥ a∗

for any n ≥ 1. We denote by Inf(A) the set of all infinitesimals of A and by Rad(A)
the intersection of the maximal deductive systems of A.

We obtain
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Corollary 1.66. Inf(A) ⊆ Rad(A).
We introduce the notions of archimedean and hyperarchimedean residuated lat-

tice and we prove a theorem of Nachbin type for residuated lattices.
A residuated lattice A is called archimedean if one of the equivalent conditions

from Lemma l.67 is satisfied:
Lemma 1.67. In any residuated lattice A the following are equivalent:
(i) For every a ∈ A, an ≥ a∗ for any n ≥ 1 implies a = 1;

(ii) For every a, b ∈ A, an ≥ b∗ for any n ≥ 1 implies a ∨ b = 1;
(iii) For every a, b ∈ A, an ≥ b∗ for any n ≥ 1 implies a → b = b and b → a = a.

One can easily remark that a residuated lattice is archimedean iff it has no
infinitesimals.

An element a ∈ A is called archimedean if it satisfy the condition: there is
n ≥ 1 such that an ∈ B(A)(equivalent with a ∨ (an)∗ = 1). A residuated lattice
A is called hyperarchimedean if all its elements are archimedean. Every hyperar-
chimedean residuated lattice is archimedean.

For a residuated lattice A, if A is hyperarchimedean, then for any deductive
system D, the quotient residuated lattice A/D is archimedean.

We have the following result:
Theorem 1.70. For a residuated lattice A the following conditions are equiv-

alent:
(i) A is hyperarchimedean;

(ii) Spec(A) = Max(A);
(iii) Any prime deductive system is minimal prime.
and a theorem of Nachbin type for residuated lattices :
Theorema 1.71. For a residuated lattice A the following assertions are equiv-

alent:
(i) A is hyperarchimedean;

(ii) (Spec(A),⊆) is unordered.





Chapter 2 : Localization of MTL -algebras

In this chapter we develop a theory of localization for MTL-algebras.
The original results are contained in [83] and [84].
We recall that a MTL algebra is a residuated lattice satisfying the preliniarity

equation:

(MTL) (x → y) ∨ (y → x) = 1.

Every linearly ordered residuated lattice is a MTL− algebra. A MTL− algebra
A is a BL− algebra iff in A is verified the divisibility condition: x¯ (x → y) = x∧y.
So, BL− algebras are examples of MTL− algebras,

We recall the basic definitions, examples and rules of calculus in MTL− algebras
and we prove new results about these algebras.

For a MTL− algebra A we denote by B(A) the boolean center of A.
In this chapter for a MTL-algebra A we introduce the notion of MTL-algebra

of fractions relative to a ∧-closed system .
For a ∧-close system S ⊆ A (1 ∈ S and x, y ∈ S implies x∧ y ∈ S) we consider

the congruence relation θS defined by :

(x, y) ∈ θS if and only if there is e ∈ S ∩B(A) such that x ∧ e = y ∧ e.

For x ∈ A we denote by x/S the equivalence class of x relative to θS and by
A[S] = A/θS . In A[S], 0 = 0/S, 1 = 1/S and for every x, y ∈ A,

x/S ∧ y/S = (x ∧ y)/S, x/S ∨ y/S = (x ∨ y)/S

x/S ¯ y/S = (x¯ y)/S, x/S → y/S = (x → y)/S.

Then we have :
Theorem 2.5. If A′ is a MTL-algebra and f : A → A′ a morphism of MTL-

algebras such that f(S ∩ B(A)) = {1}, then there is a unique morphism of MTL-
algebras f ′ : A[S] → A′ such that the diagram

A
pS−→ A[S]

↘
f

↙
f ′

A′

is commutative (i.e. f ′ ◦ pS = f), unde pS : A → A[S] is an ontomorphism of
MTL− algebras.

This theorem allows us to call A[S] the MTL-algebra of fractions relative to the
∧−closed system S.

If the MTL-algebra A is a BL− algebra then A[S] is also a BL− algebra.
Starting from the model of J. Schmid ([90], [91]) we introduce the notion of

maximal MTL-algebra of quotients for a MTL− algebra using the strong multipliers.
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8 Chapter 2 : Localization of MTL -algebras

We denote by I(A) the set of all ordered ideals of MTL− algebra L(A) :

I(A) = {I ⊆ A : if x, y ∈ A, x ≤ yand y ∈ I, then x ∈ I}.
By partial strong multiplier on A we mean a map f : I → A, where I ∈ I(A),

which verifies the next axioms:
(smMTL1) f(e¯ x) = e¯ f(x), for every e ∈ B(A) and x ∈ I;
(smMTL2) x¯ (x → f(x)) = f(x), for every x ∈ I;
(smMTL3) If e ∈ I ∩B(A), then f(e) ∈ B(A);
(smMTL4) x ∧ f(e) = e ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I.

(we remark that e¯ x ∈ I since e¯ x ≤ e ∧ x ≤ x).
By smMTL2 we deduce (smMTL5) : f(x) ≤ x, for every x ∈ I;
If A is a BL algebra, then smMTL2 is a consequence of smMTL5 (because in

this case x¯ (x → f(x)) smMTL5= f(x), for every x ∈ I).
By dom(f) ∈ I(A) we denote the domain of f ; if dom(f) = A, we call f total. To

simplify the language, we will use strong multiplier instead partial strong multiplier,
using total to indicate that the domain of a certain strong multiplier is A.

The maps 0,1 : A → A defined by 0(x) = 0 and 1(x) = x, for every x ∈ A are
strong multipliers on A. For a ∈ B(A) and I ∈ I(A) the map fa : I → A defined
by fa(x) = a ∧ x, for every x ∈ I is a strong multiplier on A (called principal ). If
dom(fa) = A, we denote fa by fa .

For I ∈ I(A), we denote

M(I,A) = {f : I → A | f is a strong multiplier on A}
şi

M(A) = ∪
I∈I(A)

M(I, A).

If I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2, then
f1(x)¯ [x → f2(x)] = f2(x)¯ [x → f1(x)], for every x ∈ I1∩ I2.
For I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2, we define f1 ∧ f2, f1 ∨ f2, f1 ⊗ f2,

f1 Ã f2 : I1 ∩ I2 → A by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x),

(f1 ∨ f2)(x) = f1(x) ∨ f2(x),

(f1 ⊗ f2)(x) = f1(x)¯ [x → f2(x)] mtl−c7= f2(x)¯ [x → f1(x)],

(f1 Ã f2)(x) = x¯ [f1(x) → f2(x)],
for every x ∈ I1∩ I2.

We obtain :
Proposition 2.14. (M(A),∧,∨,⊗, Ã,0,1) is a MTL-algebra.
The map vA : B(A) → M(A) defined by vA(a) = fa for every a ∈ B(A) is a

monomorphism of MTL-algebras.
A nonempty set I ⊆ A is called regular if for every x, y ∈ A such that x∧e = y∧e

for every e ∈ I ∩B(A), then x = y.
We denote by

Mr(A) = {f ∈ M(A) : dom(f) ∈ I(A) ∩R(A)},
where

R(A) = {I ⊆ A : I is a regular subset ofA}.



Chapter 2 : Localization of MTL -algebras 9

On Mr(A) we consider the congruence relation ρA defined by

(f1, f2) ∈ ρA if and only if f1şi f2 coincide on the intersection of their domains.

For f ∈ Mr(A) with I = dom(f) ∈ I(A)∩R(A), we denote by [f, I] the equivalence
class of f modulo ρA and by

A′′ = Mr(A)/ρA , which is a Boolean algebra (see Remark 2.14.).
Let the map vA : B(A) → A′′ defined by vA(a) = [fa, A] for every a ∈ B(A).

Then:

(i) vA is a monomorphism of MTL algebras;
(ii) For every a ∈ B(A), [fa, A] ∈ B(A′′);

(iii) vA(B(A)) ∈ R(A′′).

Since for every a ∈ B(A), fa is the unique maximal strong multiplier on [fa, A]
we can identify [fa, A] with fa. So, since vA is injective map, the elements of B(A)
can be identified with the elements of the set { fa : a ∈ B(A)}.

We introduce the notions of MTL-algebra of fractions and maximal MTL-
algebra of quotients .

If A is a MTL algebra, a MTL algebra F is called MTLalgebra of fractions of
A if:

(fr −MTL1) B(A) is a MTL subalgebra of F ;
(fr −MTL2) For every a′, b′, c′ ∈ F, a′ 6= b′, there exists e ∈ B(A) such that e∧a′ 6= e∧b′

and e ∧ c′ ∈ B(A).

As a notational convenience, we write A ¹ F to indicate that F is a MTL
algebra of fractions of A.

Q(A) is the maximal MTL algebra of quotients of A if A ¹ Q(A) and for
every MTL algebra F with A ¹ F there exists a monomorphism of MTL algebras
i : F → Q(A).

If A ¹ F , then F is a Boolean algebra, so Q(A) is also a Boolean algebra.
An important result is:
Theorem 2.25 A′′ is the maximal MTL algebra Q(A) of quotients of A.
We introduce on a MTL - algebra the notion of topology as in the case of rings

or distributive lattices. We study the notions of MTL - algebra of localization and
strong MTL - algebra of localization foraMTL− algebra A relative to the topology
F on A; We denote these by AF and s−AF and we prove that the maximal MTL -
algebra of quotients and MTL - algebra of fraction relative to an ∧− closed system
are strong MTL - algebras of localization.

We define the notion of F− multiplier, where F is a topology on a MTL−
algebra A.

A non-empty set F of elements I ∈ I(A) will be called a topology on A if the
following axioms hold:

(top1) If I1 ∈ F , I2 ∈ I(A) and I1 ⊆ I2, then I2 ∈ F (hence A ∈ F);
(top2) If I1, I2 ∈ F , then I1 ∩ I2 ∈ F .

We will use the F -multipliers in the construction of MTL− algebra of local-
ization AF relative to the topology F .

We define the congruence relation θF on A by:

(x, y) ∈ θF ⇔ there is I ∈ F such that e ∧ x = e ∧ y for every e ∈ I ∩B(A).
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A F− multiplier is a mapping f : I → A/θF where I ∈ F and for every x ∈ I
and e ∈ B(A) the following axioms are fulfilled:

(mMTL1) f(e¯ x) = e/θF ∧ f(x) = e/θF ¯ f(x);
(mMTL2) x/θF ¯ (x/θF → f(x)) = f(x).

We shall denote by M(I, A/θF ) the set of all the F− multipliers having the
domain I ∈ F and M(A/θF ) = ∪

I∈F
M(I, A/θF ). If I1, I2 ∈ F , I1 ⊆ I2 we have a

canonical mapping ϕI1,I2 : M(I2, A/θF ) → M(I1, A/θF ) defined by ϕI1,I2(f) = f|I1
for f ∈ M(I2, A/θF ). Let us consider the directed system of sets

〈{M(I, A/θF )}I∈F , {ϕI1,I2}I1,I2∈F ,I1⊆I2

〉

and denote by AF the inductive limit in the category of sets:

AF = lim−→
I∈F

M(I, A/θF ).

For any F− multiplier f : I → A/θF we shall denote by (̂I, f) the equivalence
class of f in AF .

If fi : Ii → A/θF , i = 1, 2, are F− multipliers, then (̂I1, f1) = (̂I2, f2) (̂ın AF )
if and only if there is I ∈ F , I ⊆ I1 ∩ I2 such that f1|I = f2|I .

Let fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2), F− multipliers. We consider the
mappings f1 ∧ f2, f1 ∨ f2, f1 ¯ f2, f1 → f2 : I1 ∩ I2 → A/θF defined by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x), (f1 ∨ f2)(x) = f1(x) ∨ f2(x),

(f1 ¯ f2)(x) = f1(x)¯ [x/θF → f2(x)] mtl−c8= f2(x)¯ [x/θF → f1(x)],

(f1 → f2)(x) = x/θF ¯ [f1(x) → f2(x)],
for every x ∈ I1 ∩ I2, and let

(̂I1, f1) f (̂I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2), (̂I1, f1) g (̂I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2),

(̂I1, f1)⊗ (̂I2, f2) = ̂(I1 ∩ I2, f1 ¯ f2), (̂I1, f1) 7−→ (̂I2, f2) = ̂(I1 ∩ I2, f1 → f2).

So, (AF , f, g,⊗, 7−→,0 = (̂A,0),1 = (̂A,1)) become a MTL-algebra called MTL−
algebra of localization of A relative to the topology F .

To obtain the maximal MTL -algebra of quotients Q(A) as a localization relative
to a topology F we have to develop another theory of multipliers (meaning we add
new axioms for F-multipliers).

A strong - F− multiplier is a mapping f : I→ A/θF (where I ∈ F) which
verifies the axioms mMTL1, mMTL2 and

(mMTL3) If e ∈ I ∩B(A), then f(e) ∈ B(A/θF );
(mMTL4) (x/θF ) ∧ f(e) = (e/θF ) ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I.

Analogous as in the case of F−multipliers if we work with strong-F−multipliers
we obtain a MTL− subalgebra of AF denoted by s − AF which will be called the
strong-localization MTL− algebra of A with respect to the topology F .

We describe the localization MTL-algebra AF in some special instances:
If we consider the ÃLukasiewicz structure A = I = [0, 1] and the topology F(I) =

{I ′ ∈ I(A) : I ⊆ I ′} then AF is not a Boolean algebra.
In the case F = I(A)∩R(A), s−AF is exactly the maximal MTL-algebra Q(A)

of quotients of A which is a Boolean algebra



Chapter 2 : Localization of MTL -algebras 11

If FS is the topology associated with a ∧−closed system S ⊆ A, then the MTL-
algebra s−AFS

is isomorphic with B(A[S]).





Chapter 3 : Localization of Pseudo MTL - algebras

In this chapter we develop - taking as a guide-line the case of MTL -algebras -
the theory of localization for pseudo MTL - algebras (which are non-commutative
generalization of these). The main topic of this chapter is to generalize to pseudo
MTL− algebras the notions of MTL− algebras of multipliers, MTL− algebra of
fractions and maximal MTL− algebra of quotients. The structure, methods and
techniques in this chapter are analogous to the structure, methods and techniques
for MTL− algebras exposed in Chapter 2.

We recall that a pseudo MTL- algebra ([43]) is an algebra (A,∧,∨,¯,→, Ã, 0, 1)
of type (2, 2, 2, 2, 2, 0, 0) equipped with an order ≤ satisfying the following axioms:

(psMTL1) (A,∧,∨, 0, 1) is a bounded lattice relative to the order ≤;
(psMTL2) (A,¯, 1) is a monoid;
(psMTL3) x¯ y ≤ z iff x ≤ y → z iff y ≤ x Ã z, for every x, y, z ∈ A;
(psMTL4) (x → y) ∨ (y → x) = (x Ã y) ∨ (y Ã x) = 1, for every x, y ∈ A (pseudo-

prelinearity).
If A satisfies only the axioms psMTL1, psMTL2 and psMTL3 then A is called

a pseudo residuated lattice.
If additionally for any x, y ∈ A the pseudo MTL-algebra A satisfies the axiom

(psMTL5) (x → y)¯x = x¯ (x Ã y) = x∧ y (pseudo-divisibility), then A is a pseudo
BL- algebra.

If A satisfies the axioms psMTL1, psMTL2, psMTL3 and psMTL5 then it is a
bounded divisible pseudo residuated lattice. These structures were also studied under
the name bounded RL-monoids.

A pseudo MTL- algebra A is called commutative if the operation ¯ is commu-
tative. In this case the operations → and Ã coincide, and thus, a commutative
pseudo-MTL algebra is a MTL algebra.

In this chapter by A we denote the universe of a pseudo MTL− algebra and by
C(A) = {x ∈ A : x¯ (x Ã a) = (x → a)¯ x, for every a ≤ x, a ∈ A}. (Clearly, if A
is a MTL− algebra or a pseudo BL− algebra, then C(A) = A.)

Also, we denote by I(A) = {I ⊆ A : if x, y ∈ A, x ≤ y and y ∈ I, then x ∈ I}
and by I ′(A) = {I = J ∩ C(A), J ∈ I(A)}.

So, in the case of pseudo MTL− algebras we replace I(A) by I ′(A).
If A is a MTL− algebra or a pseudo BL− algebra, then I ′(A) = I(A) is the set

of all ordered ideals of A.
The original results of this chapter are contained in [63].
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Chapter 4 : Open problems and new directions of
research

This chapter contains some open problems relative to the topics of this thesis:
1. To characterize the MTL algebras A with the property that Ds(A) is Stone

lattice (respective, normal or co-normal lattice, MV algebra, LMn alge-
bra).

2. The problem of the unicity (up to an isomorphism of Boolean algebras) for
the maximal MTL (pseudo-MTL) algebra of quotients Q(A) for a MTL
(pseudo-MTL) algebra A.

3. A non-standard construction of the maximal MTL (pseudo-MTL) algebra
of quotients as in the case of lattices (see [91]).

4. A study of localization without use the boolean center.
5. The translation of some properties of deductive systems (congruence filters)

included in Chapter 1 in the case of ideals of a commutative ring.
and new directions of research:

1. Development of a localization theory for residuated lattices (in commutative
and non-commutative cases).

2. A study of pure filters and stable topology on on residuated lattices.
3. To obtain an orthogonal decompositions of prime filter spaces of residuated

lattices.
4. To extinde for non-commutative case the results from [23].
5. A study of minimal pure filters in residuated lattices. As model for this

direction of research will be the papers [72], [71] and [75].
6. To study the structure of MTL algebra of localization for algebra Lindenbaum-

Tarski of the logic MTL and the reflection of properties of logic MTL in
this algebraic structure.

7. The study for a MTL algebra A of the different types of deductive systems
(congruence filters)in AF in connection with those of A.

8. The study of the position of the results of this thesis in connection with
another domains as: topology, logic, informatics, etc.
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[14] D. Buşneag, D. Piciu, Localization of MV-algebras and lu-group, Algebra Univers. 50 (2003),
359-380.
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[37] A. Diego, Sur les algèbres de Hilbert, Ed. Hermann, Collection de Logique Mathématique,
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[77] W. Nemitz, Semi-Boolean lattices, Notre Dame Journal of Formal Logic, Vol.10, No.3 (1969),
235-238.

[78] M. Okada, K. Terui, The finite model property for various fragments of intuitionistic linear
logic, Journal of Symbolic Logic, 64 (1999), 790-802.

[79] H. Ono, Y. Komori, Logics without the contraction rule, Journal of Symbolic Logic, 50 (1985),
169-201.

[80] J. Pavelka, On fuzzy logic II. Enriched residuated lattices and semantics of propositional cal-
culi, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 25 (1979), 119-134.

[81] D. Piciu, Localization of BL and MV algebras, Ph. D. Thesis, University of Bucharest, 2004.

[82] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.

[83] D. Piciu, A. Jeflea, MTL algebras of fractions and maximal MTL algebras of quotients,
submited to Bull. Math. de la Soc. de Sci. Math. de Roumanie.

[84] D. Piciu, A. Jeflea, Localization of MTL algebras, Conference : Algebra and Probability in
Many-Valued Logics, Darmstadt, May 7-9, 2009.

[85] D. Piciu, A. Jeflea, R. Cretan, On the lattice of deductive systems of a residuated lattice,
Annals of the University of Craiova, Math. Comp. Sci. Series, Volume 35 (2008), 199-210.

[86] N. Popescu, Abelian categories, Ed. Academiei, Bucureşti, (1971).
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