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The phenomenology of friction is an important aspect in systems control for both 
high precision servomechanisms and hydraulic or pneumatic simple systems and the 
performance of these highly accurate mechanisms is inherently affected by the friction of 
bodies which come in contact. Therefore friction is an inevitable physical phenomenon, 
causing unwanted behavior in systems control like the position errors, unstable limit 
cycles, stick-slip motion etc. Thus, one of the main problems of systems control research 
has represented friction force compensation, in order to attenuate adverse effects caused 
by it, effects that were listed above.      
 

The basic approach used for dynamical friction systems control, to avoid difficulties 
that arise due to friction is given by adaptive control strategies, called compensation techniques 
of the model based friction force. These techniques require accurate values of the parameters 
that appear in models of friction, and of these parameters, viscous and Coulomb friction 
coefficients are always present. Also the adaptive control strategy involve identification 
procedures of the controlled system, which include the identification of friction model 
parameters.         
 

This work was aimed primarily at the application and development of identification 
algorithms for the adaptive control of dynamical electrical and mechanical friction systems. 
Thus, the research undergone in this work is inline with the research direction mentioned above 
by providing an adequate solution to the modeling, identification and adaptive control 
problems, of the electrical and mechanical friction systems.  

 
The six chapters of this work demonstrate the importance and knowledge of the friction 

phenomenon, which refers to the modelling, identification and adaptive control of dynamical 
friction systems, electrical and mechanical type. 
 
 

The first chapter is an introduction to the problems of systems with friction. In order 
to apply and develop some identification algorithms used in the adaptive control of dynamical 
friction systems, are presented notions that define the concept of friction, such as friction 
present in almost mechanism with moving components, the movement influencing of friction 
forces in the mechanical, hydraulic or pneumatic systems due to the interaction with the 
environment or the interaction between these force components, engineering examples where 
friction occurs in abundance. The importance and undesirable behaviors induced by friction 
forces in systems control, the measures taken to prevent these behaviors, such as the adaptive 
control strategy based on identification methods of dynamical friction systems, the friction 
models adopted in systems control are also presented in this first chapter.   
 The chapter ends with the problem illustrates a friction system a concrete example on 
wheel-slip mechanism for rolling stocks, the scope and content of the work, and the 
publications that containing original contributions of the author.    
 
 

In the second chapter the modelling of the friction phenomenon is illustrated and 
experimental observations and theoretical concepts on static and dynamic friction are 
presented, the transition from static friction to dynamic friction, as well as modelling principles 
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of the two forces. Also were reviewed some of the static and dynamic friction models in the 
literature and used throughout this work, such as Coulomb viscous friction, simplified Dahl 
and LuGre models. 

In this work we designed, analyzed and implemented a new dynamic friction model 
from LuGre model which is called in the thesis “The modified LuGre model”. This model 
was designed in the idea of allowing the identification of parameters that determine the 
Stribeck effect (displacement effect at low velocities), impossible with the models in literature 

due to the presence of exponential function . In the proposed model, in the function 

 which models the Stribeck effect, a rational structure is considered in which the Stribeck 

velocity parameter appears, that expresses the function variation  within the range 

, where v  represents the velocity of displacement,  the Coulomb friction 

force, and  the static friction force. Thus the proposed hierarchical identification method 

with distributions, proposed by the research team which includes the author, can be applied. 
The modified LuGre model ensures the convergence improving at low velocities of the 

function  to its limits. 
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Based on friction of models like: simplified Dahl, LuGre and modified LuGre which 
induce the bidirectional motion (hysteretic), the last part of this chapter was dedicated to 
representation of the hysteretic and stick-slip phenomenon induced by the friction force in a 
mass-spring mechanical system described by block diagram in Fig. 1. This system was 
represented as an interconnection with negative feedback between the linear part given by the 

transfer function of the fixed part of the system  H s  and the nonlinear part expressed by the 

friction force fF

pK

 as in Fig. 2, where m  represents the mass of  the system attached to a spring 

with stiffness , moving on a horizontal surface,  represents the external force that acts on 

the mass, and 

eF

x  the displacement of the mass. Originally the mass is at rest in a position 
expressed by the variable . The results obtained have highlighted the advantages of 
modified LuGre model to the model LuGre by better response time and the elimination of the 
inflection points.          
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Fig. 1 Principle diagram of the mass - spring system with friction. 
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Fig. 2 Block scheme of the mass - spring system with friction. 
 
 

The third chapter discusses the parameters estimation problem for friction systems. 
Preliminary concepts for local optimization problems without restrictions, respectively the 
problem formulation of the gray-box models using iterative minimization of prediction error 
have been studied. Using functions without restrictions, fminsearch and fminunc in Matlab's 
Optimization Toolbox, an estimate of the DC motor parameters with dynamic friction model 
(LuGre model) in steady state was achieved, and some of the results obtained were 
approximate. 

Also, using the iterative minimization of prediction error the gray-box  models (models 
with partially or totally unknown parameters) parameters estimation was extended from the  
of Matlab's Identification Toolbox for friction systems. This estimation of the systems’ 
parameters with gray-box friction models was based on samples acquired experimentally 
(points of the Input/Output information) which lead to obtaining approximate results for both 
static friction model and a system with a dynamic friction model (simplified Dahl model). The 
gray-box friction of models estimated can be used for system control, and gray-box items may 
be different friction characteristics. Therefore, models with gray-box friction have been 
analyzed in this chapter are most suitable for parameters estimating of systems with friction. 
 
 

In the fourth chapter an extension of the identification method based on 
distributions at dynamic systems with friction was achieved. The formulation of the 
identification problem in terms of distributions was analyzed, and to experiment with the 
theoretical concepts an assessment of so-called test functions was proposed, for converting 
differential equations into algebraic equations with respect to unknown parameters of systems 
with friction. Also, the approach based on distributions of generalized dynamical systems with 
friction was performed, respectively the development and expansion of a DBI (Distributions 
Based Identification) experimental platform to identify friction systems parameters. Some of 
the results obtained are approximate.  

For example, a generalized dynamical system with friction is presented, analyzed in 
terms of distributions. The distribution means a function  that admits an 

integral in the Riemann sense on any compact interval T  from  of the form: 

: ,q t  

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            (1)  : ,q n qF F     

n

which can be built by the relation: 

   ( ) ,q

R

F q t t dt               (2) 

where  represents the fundamental space from distribution theory, and n   represents the real 

testing function : , n      characterized by bounded support  in which T

 , ,a bt a bT t t t . A generalized dynamic friction system (GFDS) is a system characterized 

by a state equation of the form:  

1( , , ,.., ,.., )i px f x u r r r            (3) 

where n
0( ) R ,x t    X t t , is the state vector and q

0( ) R ,u t t t   U  is the input vector. 

The vectors  are called friction reaction vectors. They depend 

on 

n
i( ) R ,ir t  R 0 , 1:t t i p  

x  and  through a specific operator u i{} , called friction operator, having the following 

form: 

i{ , }, 1:ir x u i   p

p

             (4) 

For static friction models (SFM), this operator (4) can be expressed as a function of , 

and  only, by the relation: 

iv

ia

i ( , ) ( , ), 1:i i i ir v a F x u i              (5) 

where  determines the so called generalized velocity 

vector , and  expressing the so called active 

component of the velocity vector . A particular structure for the relation (5) is of the form: 

im
i i( , ) : R , 1:iv x u i  X× U V

iv i ( , ) :ia x u X× U A

iv

p

pim
i R , 1:i

s c
i i ir r r                    (6) 

which is equivalent with: 

i( , ) ( , ) ( , ), ,s c
i i i i i i i i i i iv a v a v a v a      V iA          (7) 

where s
ir

i p

 represents static friction reaction, and  represents cinematic friction reaction 

( ). 

c
ir

1:

 There are different specific expressions for the functions  and  

considering the relations (6) and (7), but three conditions must be accomplished:  

( , )s
i i iv a ( , )c

i i iv a

a. Outside the surface ,  is a vector opposite to iS ir 0iv  : 

, 0,i i i i ir v v 0                           (8) 

b. Inside the surface ,  is a vector opposite to :  iS ir ia

, 0,i i i i ir a v 0                 (9) 

c. There is a closed subset , called sticky area (SA), which keeps the system state 

inside. This means: 

0S ( ) Si u  i

0
i( ( )) [ ( )] ( ) 0, S ( )Td d

i idt dxv x t v x x t x u                   (10) 
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inside the SA . The condition c, is called the smooth sticky condition (SSC). ir a  i

 For example, expressions as (11) and (12) satisfy the conditions a, b, c, where by  it 

must understand , 

ia

( , )i ia a x u

( , ) max{ , } sgn( ) [1 sgn( ) ]
i

s s
i i i i C i i ir v a F a a v             (11) 

( , ) [ ( 1)] sgn( )i i

i i

vc c
i i i i C v i ir v a F F v B e            iv

s

       (12) 

 As it can be observed, the cinematic reaction  is a sum of three components, 

 expressing respectively Coulomb friction, viscous friction and the so called Stribeck 

effect, 

c
ir

, ,cc cv cs
i i ir r r

c cc cv c
i i i ir r r r               (13) 

Therefore, if the number of components 1im  , all  are scalar variables so the 

static reaction (11), 

, ,i i ir a v
s

ir , is illustrated in Fig. 3a and the cinematic reaction (12), , is presented 

in Fig. 3b.    
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Fig. 3 Static and cinematic components of a scalar friction reaction. 
 
Substituing the relation (5) into (3) and denoting 

1 1 i p( , ) ( , , ( , ) ,.., ( , ),.., ( , ))x u f x u F x u F x u F x uf                    (14) 

GDFS takes the compact form 

0 0( , ) , ( ) , 0x x u x t x t t f                        (15) 

This is a differential system with a discontinuous function on the right side so for its analytical 
description, special mathematical approaches are necessary. For the identification it is 
supposed a solution exist for (15) and are available as measurements the input variable u  and 
the output variable  where, y

( , )y h x u                           (16) 

The structure of a GDFS with static friction model is illustrated in Fig. 4. 
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Fig. 4 The feedback structure of a GDFS with static friction model. 
 

For dynamic friction models, (DFM) the operator (4) is a dynamic system characterized 

by an additional state vector , expressing internal changes in some surfaces of relative 

movements. The friction reaction vector  is the output of a dynamic system, 

iz

ir

                         (17) i ( , , )i ir h z x u

                      (18) i ( , , )i iz f z x u
 The structure of equation (18) is similar to (15), that means a smooth system with a 
sticky feedback as (11), (12). 
 
 

The fifth chapter of this work addresses the adaptive control of dynamical friction 
systems. After introducing related adaptive friction compensation has been developed and 
implemented a control structure with and without adaptive mode both off-line and on-line by 
placing an on-line adaptive estimator for the parameter of Coulomb friction in terms of the 
angular position control of the gear experiment Quanser SRV-02. In addition, a control 
structure has been developed and implemented with and without adaptive mode only off-line 
based on the distributions theory regarding of angular velocity control of a dynamical system 
with friction and extend this structure by adding self tuning block (adaptation of regulation 
law’s parameters) for the mass-spring mechanical system. This chapter has attempted to 
highlight the improved efficiency of adaptive control to classic control for dynamic systems 
with friction.  

For example, in Fig. 5 is presented the structure of adaptive control off-line type using 
the theory of distributions for a DC motor with dynamic friction model (Dahl simplified 
model), and in Fig. 6 is illustrated extended version of the structure from Fig. 5 by adding self 
tuning block for the mass-spring mechanical system. 

 6



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The structure of regulation of the angular velocity of the DC motor with simplified Dahl 
friction model using adaptive control. 

       
The block „The DC motor with simplified Dahl friction model” has a manipulated 

variable m  (the motor torque) and v  (the real velocity of the motor) as feedback variable for 

the closed loop system. Some other variables, denoted , are utilized for the identification of  

dynamical friction system. The set point is  (the desired velocity of the motor), and the block 

„The identification of the DC motor parameters with simplified Dahl friction model ” receives 

the pair  , as measured signals, and realizes the identified parameters 

iv

dv

,m iv ̂ , the 

identification status  and additional variables, is fv  necessary for the block „Simplified Dahl 

friction model with estimated parameters”. The output of this block, of friction compensation, 
the estimated friction torque ˆ f , is applied to the plant with friction (The DC motor with 

simplified Dahl friction model) as a correction signal. We will consider that ˆ f  depends of the 

identified parameter (the viscous friction parameter) ˆ
v̂F  , as well as of the real velocity of 

the motor, respectively the bristle deviation , and considering the stiffness parameter z   
determined off-line.    

    
For the mass-spring mechanical system with friction, as a controlled plant, called „Plant  

with friction” (PF), has a manipulated variable u  (a horizontal force acts on the system mass 
) and m x  (the mass displacement) as feedback variable for the closed loop system. Some 

other variables, denoted ix , are utilized for the identification of the mass-spring system 

parameters with friction. The set point is dx  (the desired position of the mass) and the 

command variable, delivered by the „Controller” (C) is rx . The block „The identification of 

the mass-spring system parameters with friction” receives the pair  , iu x , as measured signals, 

and realizes the identified parameters ̂ , the identification status  and additional variables, is

fx  necessary for the block „Friction model with estimated parameters”. The output of this 

block, of friction compensation, the estimated friction force ˆ
fF , is applied to the plant with 

iv  

Controller 

 
The DC motor with 
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friction model 
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The identification of the DC 
motor parameters with simplified 

Dahl friction model  

Simplified Dahl friction 
model with estimated 
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fv  

ˆ , is  
ˆ , is  
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
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m  

iv  
e   

dv  

 
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friction (IF) as correction signal. The block „Controller tuning” (CT) adjusts some of the 

controller parameters, depending on the pair  ˆ , is . 
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Fig. 6 Self tuning control mass - spring system structure. 

 
 

Personal contributions made by research carried out during this work are presented in 
the conclusions of each chapter, which is summarized in the sixth chapter and the last of this 
work. 

This work corresponds to current trends in the field of friction, adding a necessary 
contribution in the modelling, identification and adaptive control of dynamical friction 
systems, electrical and mechanical. 

 
The research in this work highlighted the importance of the phenomenon of friction 

using algorithms for the adaptive control of dynamical friction systems, electrical and 
mechanical type. Compared to classic control, depending on modelled and identified friction 
system complexity, through this study the possibility to adapt the parameters of the phisical 
friction system on-line and off-line was demonstrated, and this was done without affecting its 
time response. This aspect has underlined the applied importance in friction systems control, in 
the case when at a certain moment in time one or more parametres are modified.   

All concepts and structures developed and implemented during this work are the base 
modelling, identification and adaptive control of dynamical friction systems, leading to 
obtaining significant results and useful both theoretically and practically. 
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