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Summary

On this thesis we are interested to study the controllability properties of some partial differential

equations (discrete and continuous) when a vanishing perturbation is added. More precisely, we

want to find a control for the initial problem as limit of controls of the perturbed one. The extra

term changes the type of our equation, usually from hyperbolic to parabolic, introducing a stronger

dissipation in the system. Therefore, we can say that we are dealing with singular controllability

problems. The addition of a viscous perturbative term is a common tool in the study of qualitative

or numerical properties of dynamical systems. This procedure is useful, for instance, if we desire to

regularize the solution or to filter out some unwanted spurious high oscillations. Our study shows

that, in some particular but relevant situations, the controllability properties of the equation are not

affected by the perturbation (in the continuous cases) or even improved by it (in the discrete cases).

The method used, along this thesis, to study the controllability is a classical one which consists in

reducing the controllability problem to a moment problem whose solutions are given in terms of an

explicit biorthogonal sequence to a family of exponential functions.

We give now a short presentation of this method. Let (λn)n be a sequence of complex numbers (which

are usually the eigenvalues of the unbounded differential operator corresponding to our problem). We

reduce the control problem to a moment problem of the type: find a function v ∈ L2
(
−T

2 ,
T
2

)
such

that ∫ T
2

−T
2

v

(
t+

T

2

)
etλndt = âne

−T
2
λn (∀n), (1)

where (ân)n is a sequence of complex numbers (determined by the initial datum to be controlled). Once

we have a biorthogonal sequence (θm)m to the family of exponential functions (etλn)n in L2
(
−T

2 ,
T
2

)
a “formal” solution of (1) will be given by

v(t) =
∑
n

âne
−T

2
λnθn

(
t− T

2

)
(t ∈ (0, T )) . (2)

Now, the main task is to show that there exists a biorthogonal sequence (θm)m and to evaluate its

L2−norm in order to prove the convergence of the series from the right hand side of (2), for each

initial data we want to control.

Moreover, as we have said before, in all our problems the eigenvalues λn and the coefficients ân depend

on one or two parameters which introduce the perturbation terms and are devoted to tend to zero. We

are interested to study the controllability properties of our problems when those parameters vanish.

If there exists a solution of problem (1) which is uniformly bounded with respect to our vanishing

parameters we say that our problem is uniformly controllable. In this case we can pass to the limit

and we can obtain a control of the unperturbed equation as limit of controls of the perturbed one.
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The characteristic of our moment problems is the presence of values (λn)n ⊂ C with vanishing

real parts. While many results are known for purely imaginary or real values (λn)n, fewer concern

the complex case. Moreover, the fact that the real parts of λn tend to zero when our perturbation

parameter vanishes makes the problem singular and more difficult.

This thesis contains six chapters and it begins with a short introduction. The first chapter contains

a few general results that we have used on the main part of the thesis. The rest of the chapters are

divided into two parts dedicated to the study of the controllability for some hyperbolic equations with

vanishing viscosity and for some perturbed discrete problems, respectively.

Chapter 1, entitled General results, gives a briefly presentation of the basic results concerning

the moment problems, the biorthogonal sequences and nonharmonic Fourier series. We mention here

Müntz’s Theorem, Ingham’s Theorem, Szász’s Theorem and Paley–Wiener Theorem. Moreover, we

show how we can obtain a biorthogonal sequence when we are dealing with a family of real or purely

imaginary exponential functions. These are known facts and we include them here just for comparison

and for a better understanding of the method we use. In the last part of this chapter we give a brief

description of the method we use to construct and evaluate biorthogonal sequences to general families

of exponential functions. This construction was use for the first time by Paley and Wiener [18] in

their study of completness properties of exponential families and, in a refined way, by Fattorini and

Russell [10, 11] in the first proof of controllability of the heat equation.

Part I entitled Controllability of some hyperbolic problems with vanishing viscosity contains chapters

2–4. In this part we study the controllability properties of the wave, Schrödinger and beam equations

when a viscous term is introduced. The viscous term depends on a small parameter and vanishes

as the parameter goes to zero. This study is motivated by the fact that viscous terms are usually

introduced in equations of hyperbolic type to increase the regularity of the solutions or to dissipate

the high oscillations. Our aim is to show which of the controllability properties of the initial equation

are preserved after the introduction of a viscosity and if we can obtain a limit control from controls

of the perturbed system.

Chapter 2 entitled A singular control problem for the wave equation is based on the paper A

singular controllability problem with vanishing viscosity written in collaboration with S. Micu (see [3]).

In this chapter, we study the controllability properties of a vanishing viscosity approximation of the

one dimensional wave equation and the relations with the ones of the conservative limit equation. The

characteristic of the viscous term is that it contains the fractional power α of the Dirichlet Laplace

operator. The parameter α belongs to [0, 1) \
{
1
2

}
and through him we may increase or decrease

the strength of the high frequencies damping which allows us to cover a larger class of dissipative

mechanisms. The viscous term, being multiplied by a small parameter ε devoted to tend to zero,

vanishes in the limit.

More precisely, we begin with the problem: given T, ε > 0 and α ∈ [0, 1) \
{
1
2

}
we consider the

perturbed wave equation with “lumped” control
utt(t, x)− ∂2

xxu(t, x) + 2ε(−∂2
xx)

αut(t, x) + ε2(−∂2
xx)

2αu(t, x) = vε(t)f(x) (t, x) ∈ QT

u(t, 0) = u(t, π) = 0 t ∈ (0, T )

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ (0, π),

(3)

where the profile f ∈ L2(0, π) is given such that all his the Fourier coefficients are different of zero

and QT = (0, T )× (0, π).
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Equation (3) is said to be null controllable in time T > 0 if, for any initial data (u0, u1) ∈ H0 ⊂
H1

0 (0, π)× L2(0, π), there exists a control vh ∈ L2(0, T ) such that the corresponding solution verifies

u(T, x) = ut(T, x) = 0 (x ∈ (0, π)). (4)

The space H0 is defined as follows

H0 =

(u0, u1) ∈ H1
0 (0, π)× L2(0, π)

∣∣∣∣∣∣∣
∑
n≥1

n2
∣∣û0n∣∣2 + ∣∣û1n∣∣2∣∣∣f̂n∣∣∣2 < ∞

 , (5)

where (û0n)n≥1, (û
1
n)n≥1 and (f̂n)n≥1 are the Fourier coefficients of the initial data (u0, u1) and of the

profile f , respectively.

The term 2ε(−∂2
xx)

αut(t, x) represents an added viscous term and ε2(−∂2
xx)

2αu(t, x) allows us to

consider a stronger dissipation, both are devoted to vanish as ε tends to zero. It is important to notice

at this moment that if we only add the first viscous term, 2ε(−∂2
xx)

αut(t, x), the resulting equation

will remains dissipative but his controllability properties are poor. Indeed, the family of exponential

functions corresponding to this case is given by Λ =
(
eνnt

)
n∈Z∗ , where νn = ε|n|2α+sgn (n)

√
|n|4α − n2.

We notice that, if α > 1
2 , we obtain

lim
n→−∞

νn = 0,

which implies that the family Λ is not minimal. Consequently, the problem is not spectrally controllable

if α > 1
2 . Since the most interesting case corresponds to α > 1

2 , it appears that stronger dissipation is

needed. This is obtained by adding the second viscous term, ε2(−∂2
xx)

2αu(t, x).

The null controllability problem is equivalent to find, for every initial data (u0, u1) ∈ H0, a solution

vε ∈ L2(0, T ) of the following moment problem:∫ T
2

−T
2

vε

(
t+

T

2

)
eλntdt = −e−λn

T
2

f̂|n|

(
û1|n| + λnû

0
|n|

)
(n ∈ Z∗), (6)

where λn = in+ ε|n|2α are the eigenvalues of the operator

W =

(
0 −I

−∂2
xx + ε2(−∂2

xx)
2α 2ε(−∂2

xx)
α

)
corresponding to the “adjoint” problem of (3).

We recall that (θm)m∈Z∗ ⊂ L2(−T
2 ,

T
2 ) is a biorthogonal sequence to the family of exponential func-

tions
(
eλnt

)
n∈Z∗ in L2(−T

2 ,
T
2 ) if and only if∫ T

2

−T
2

θm(t)eλntdt = δmn (m,n ∈ Z∗). (7)

Once we have at our disposal a biorthogonal sequence (θm)m∈Z∗ to the family
(
eλnt

)
n∈Z∗ in L2(−T

2 ,
T
2 ),

we can give immediately a formal solution of (6) through the formula

vε(t) = −
∑
m∈Z∗

e−λm
T
2

f̂|m|

(
û1|m| + λmû0|m|

)
θm

(
t− T

2

)
(t ∈ (0, T )). (8)
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Now the main task is to show that there exists a biorthogonal sequence (θm)m∈Z∗ to the family

of exponential functions
(
eλnt

)
n∈Z∗ in L2(−T

2 ,
T
2 ) and to evaluate its norm, in order to prove the

convergence of the right hand side of (8) for any initial data (u0, u1) ∈ H0.

The main result of this chapter reads as follows:

Theorem 1. Let α ∈ [0, 1) \
{
1
2

}
and f ∈ L2(0, π) be a function such that f̂n ̸= 0 for every n ≥ 1.

There exists a time T > 0 with the property that, for any (u0, u1) ∈ H0 and ε ∈ (0, 1), there exists a

control vε ∈ L2(0, T ) of (3) such that the family (vε)ε∈(0,1) is uniformly bounded in L2(0, T ) and any

weak limit v of it, as ε tends to zero, is a control in time T the wave equation.

In order to justify the damping mechanism introduced in (3), which involves the fractional power α

of the Laplace operator, let us point out that sometimes it may be useful to control the amount of

dissipation introduced in the system not only by means of the vanishing parameter ε but also by an

adequate choice of the differential operator. In (3) this is achieved through the parameter α. Note

that, if α ∈
[
0, 12

)
, the imaginary parts of the eigenvalues λn dominate the real ones and problem (3)

has the same hyperbolic character as in the limit case ε = 0. On the contrary, if α ∈
(
1
2 , 1

)
, (3) has a

parabolic type. In this case we are dealing with a truly singular control problem and the pass to the

limit is sensibly more difficult. Finally, let us remark that α = 1
2 is a singular case in which the basic

controllability properties (such as spectral controllability) of (3) do not hold.

For α ∈ [0, 1) \ {1
2}, the construction from the proof of the main result implies that the following

Ingham’s type inequality (see [15]) holds, for any finite sequence (βn)n∈Z∗ and T sufficiently large,

C(T, α)
∑
n∈Z∗

|βn|2e−ωε|n|2α ≤
∫ T

−T

∣∣∣∣∣∑
n∈Z∗

βne
λnt

∣∣∣∣∣
2

dt, (9)

where ε ∈ (0, 1), ω is an absolute positive constant and C a positive constant depending of T and

α but independent of ε. From this point of view this result extends the ones from [9, 12, 19], where

Ingham’s type inequalities are obtained under a more restrictive uniform sparsity condition of the

sequence (λn)n∈Z∗ . Indeed, one of the major difficulty in our study is related to the fact that the

sequence of our eigenvalues (λn)n∈Z∗ are not included in a sector of the positive real axis and does not

verify a uniform separation condition of the type

|λn − λm| ≥ δ|nβ −mβ| (n,m ∈ Z∗),

for some β > 1 and δ > 0 independent of ε. The fact that C(T, α) in (9) does not depend of ε is of

fundamental importance since it ensures the uniform boundedness of a family of controls (vε)ε∈(0,1)
for (3) and the possibility to pass to the limit in order to obtain a control v for the wave equation

utt(t, x)− ∂2
xxu(t, x) = v(t)f(x) (t, x) ∈ QT

u(t, 0) = u(t, π) = 0 t ∈ (0, T )

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ (0, π).

(10)

Chapter 3 entitled Controllability of a Schrödinger equation is based on the paper Small time

uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity

written in collaboration with I. Rovenţa (see [4]). In this chapter, we discuss the linear one dimensional

Schrödinger equation perturbed by a vanishing viscosity term depending on a small parameter ε. We
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are interested to prove that, for any time T > 0 and for each initial datum u0 ∈ H−1(0, π), there exists

an uniformly bounded family of boundary controls.

More precisely, we consider the following problem: for a given T > 0 and an initial datum u0 ∈
H−1(0, π), we look for a boundary control of the Schrödinger equation as limit of the following per-

turbed problem 
ut(t, x)− i uxx(t, x)− εuxx(t, x) = 0 x ∈ (0, π), t > 0

u(t, 0) = 0, u(t, π) = vε(t) t > 0

u(0, x) = u0(x) x ∈ (0, π),

(11)

where ε > 0 is a small parameter devoted to tend to zero and −εuxx represents the viscous term.

We emphasize that the focus of our concern is the uniform controllability with respect to ε of (11)

and the possibility of obtaining controls for
ut(t, x)− i uxx(t, x) = 0 x ∈ (0, π), t > 0

u(t, 0) = 0, u(t, π) = v(t) t > 0

u(0, x) = u0(x) x ∈ (0, π),

(12)

as limits, when ε goes to zero, of controls for (11). The interest of this problem is justified by the use of

the vanishing viscosity as a typical mechanism to study Cauchy problems and to improve convergence

of numerical schemes for hyperbolic conservation laws and shocks.

We reduce the control problem to a moment problem similar to (1) where the eigenvalues are given

by λn = εn2 − in2 for any n ∈ N∗ and the coefficients ân = (−1)nπ
2n(i+ε) û

0
n, where (û0n)n≥1 are the Fourier

coefficients of the initial datum u0.

It is easy to see from the moment problem that, if (ζm)m≥1 is a biorthogonal sequence to the family

of exponential functions
(
eλnt

)
n≥1

in L2
(
−T

2 ,
T
2

)
, then a control vε of (11) is given by

vε(t) =
∞∑
n=1

(−1)nπan
2n(i+ ε)

e−
T
2
λnζn

(
t− T

2

)
(t ∈ (0, T )), (13)

provided that the right hand series converges in L2(0, T ).

Now, the main task is to show that there exists a biorthogonal sequence (ζm)m≥1 and to evaluate

its L2−norm in order to prove the convergence of the series from (13) for each u0 ∈ H−1(0, π). In

order to do that, we introduce a family Ψm(z) of entire functions of arbitrarily small exponential type

(see, for instance, [20], page 61) such that Ψm(iλn) = δmn. Nextly, Paley–Wiener Theorem gives us a

biorthogonal family (θm)m≥1 as the inverse Fourier transforms of (Ψm)m≥1. Each Ψm is obtained from

a Weierstrass product Pm multiplied by a function Mm,ε, called multiplier, with a suitable behavior

on the real axis. Such a method was used for the first time by Paley and Wiener [18] and, in the

context of control problems, by Fattorini and Russell [10, 11].

It is interesting to note that the simplest election for the function Pm does not work. Indeed, if

we define Pm such that Pm(iλn) = δmn, where λn are the eigenvalues of the operator corresponding

to the adjoint problem of (11), we will be able to prove that Pm is an entire function with a good

behavior on the real axis, but we will not succeed to construct an appropriate multiplier due to the

lack of eigenvalues of our problem. To fix this problem we will add new values with the properties

that between every two added values we have a gap γ and at most one eigenvalue of our problem.
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The main result of this chapter reads as follows.

Theorem 2. Let T > 0, ε > 0 and u0 ∈ H−1(0, π). There exists a control vε ∈ L2(0, T ) of (11) such

that the family (vε)ε is uniformly bounded in L2(0, T ) and any weak limit v of it is a control in time

T for (12).

Chapter 4 entitled A note regarding the control of the beam equation is based on the paper

Uniform controllability for the beam equation with vanishing structural damping (see [6]). This chapter

is devoted to study the effects of a vanishing structural damping on the controllability properties of

the one dimensional linear beam equation.

More precisely, we study the possibility of obtaining a boundary control for the linear one dimensional

beam equation as limit of controls of the following perturbed equation

utt(t, x) + uxxxx(t, x)− εutxx(t, x) = 0 (t, x) ∈ QT

u(t, 0) = uxx(t, 0) = uxx(t, π) = 0 t ∈ (0, T )

u(t, π) = vε(t) t ∈ (0, T )

u(0, x) = u0(x) x ∈ (0, π)

ut(0, x) = u1(x) x ∈ (0, π),

(14)

where ε is a small parameter which tends to zero. We say that vε ∈ L2(0, T ) is a control for (14) in

time T if the corresponding solution verifies

u(T, x) = ut(T, x) = 0 (x ∈ (0, π)), (15)

for an initial data (u0, u1) in the space

H = H−1(0, π)× V ′, (16)

where

V =
{
φ ∈ H3(0, π) |φ(0) = φ(π) = φxx(0) = φxx(π) = 0

}
.

If, for any initial data (u0, u1) ∈ H, there exists a control vε ∈ L2(0, T ) for (14) we say that the

problem (14) is null controllable in time T . In (14), −εutxx(t, x) represents the structural damping,

devoted to vanish as ε goes to zero. The introduction of a vanishing term is a common tool in the study

of Cauchy problems or in improving convergence of numerical schemes for hyperbolic conservation laws

and shocks. Thus, a legitimate question is related to the behavior and the sensitivity of the controls

during this process which is precisely the aim of this chapter.

The main result of this chapter is given by the following theorem.

Theorem 3. There exists T > 0 with the property that, for any (u0, u1) ∈ H and ε ∈ (0, 1), there

exists a control vε ∈ L2(0, T ) of (14) such that the family (vε)ε>0 is uniformly bounded in L2(0, T )

and any weak limit v of it is a control in time T of
utt(t, x) + uxxxx(t, x) = 0 (t, x) ∈ QT

u(t, 0) = uxx(t, 0) = uxx(t, π) = 0 t ∈ (0, T )

u(t, π) = v(t) t ∈ (0, T )

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ (0, π).

(17)
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Part II entitled Controllability of some perturbed discrete problems contains chapters 5 and 6. In this

part we study the controllability properties of some discretizations corresponding to the heat and beam

equations. It is well known that the good controllability properties of the continuous equations (wave,

heat or beam) are lost when the usual finite differences schemes are considered. This phenomenon

is due to the spurious high oscilations introduced by the discretization process (in the case of the

hyperbolic type equations) or to the ill conditioning of the problem (in the case of the parabolic

type equations). The aim of our study is to show that, under a perturbation which depends on the

discretization parameter and vanishes in the limit, the approximation properties of the controls of the

discrete systems are improved.

Chapter 5 entitledAn approximation the controls for the heat equation is based on the paper

A numerical method with singular perturbation to approximate the controls of the heat equation which is

written in collaboration with S. Micu (see [2]). This chapter is devoted to analyze a numerical scheme

for the approximation of the linear heat equation’s controls. We consider a singular perturbation which

consists of introducing the term ε∂tt in the heat equation and transforming it into a wave equation. We

manage to prove that there exists a sequence of controls of the corresponding perturbed semi-discrete

systems which converges to a control of the original heat equation when both h (the mesh size) and ε

(the perturbation parameter) tend to zero.

In this chapter we study the numerical implementation of the Hilbert Uniqueness Method for solving

exact and approximate boundary controllability problems for the heat equation by reducing them to

a minimization problem depending on the solutions of the adjoint equation. However, from the very

beginning, the numerical experiments have shown that the efficient computing of the null controls for

the heat equation is a difficult problem. The very weak coercivity of the functionals under consideration

and the low regularity of the minimizers make the approximation problem exponentially ill-posed and

the functional framework far from being well adapted to standard techniques in numerical analysis. For

these reasons, how to construct robust numerical approximations of exact null controls for parabolic

systems remains a challenging problem.

Since then, many alternative methods have been proposed and analyzed:

• [7] the controls of the heat equation are found by minimizing a cost functional with weights that

blows up near the control time T ;

• [16] a least squares type method is analyzed. Instead of working with solutions of the underlying

state equation, and looking for one that may comply with the final desired state, they consider

a suitable class of functions complying with required initial, boundary, and final conditions, and

seek one of those that is a solution of the state equation;

• [17] a numerical version of the so–called transmutation method is developed.

In spite of this interesting studies, there are still relatively few results of convergence in the literature.

We mention here the recent paper [1] in which special Carleman estimates are used to obtain uniform

observability inequalities for semi–discrete semi–linear parabolic equations.

In this chapter we modify the heat equation with the aim to restore the stability of the corresponding

backward system. More precisely, we consider N ∈ N∗, a step h = 1
N+1 and an equidistant mesh of

the interval (0, 1), 0 = x0 < x1 < . . . < xN < xN+1 = 1 with xj = jh and 0 ≤ j ≤ N + 1. Our

perturbation technique and the classical central finite–difference approximation of the space derivates
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leads to the following semi–discretization of the one dimensional heat equation with boundary control

εu′′j (t) + u′j(t)−
uj+1(t)+uj−1(t)−2uj(t)

h2 = 0 1 ≤ j ≤ N, t ∈ (0, T )

u0(t) = 0 t ∈ (0, T )

uN+1(t) = vh(t) t ∈ (0, T )

uj(0) = u0j 1 ≤ j ≤ N

u′j(0) = u1j 1 ≤ j ≤ N,

(18)

where ε = ε(h) and lim
h→0

ε(h) = 0. Hence, εu′′ represents a singular perturbation term which eventually

vanishes in the limit as h tends to zero. Note that (18) is a second order differential system. As a

consequence of this fact, a second initial data, u1, is introduced.

The null controllability problem for (18) reads as follows: given any T > 0, ε > 0 and any initial

data (u0j , u
1
j )1≤j≤N ∈ C2N , there exists a control vh ∈ L2(0, T ) such that the corresponding solution

(uj , u
′
j)1≤j≤N of (18) verifies

uj(T ) = u′j(T ) = 0 (1 ≤ j ≤ N). (19)

If the null controllability problem (18)−(19) has a solution vh ∈ L2(0, T ) for every initial data

U0
h = (u0j )1≤j≤N ∈ CN and U1

h = (u1j )1≤j≤N ∈ CN , we say that (18) is null controllable in time T .

In this case the moment problem has the eigenvalues given by

λn =


1 + sgn(n)

√
1− 4εµ|n|

2ε
if µ|n| ≤

1

4ε

1 + i sgn(n)
√

4εµ|n| − 1

2ε
if µ|n| >

1

4ε
,

(1 ≤ |n| ≤ N), (20)

and the coefficients ân = (−1)n h
sin(|n|πh)

(
εa1|n|h − ελna

0
|n|h + a0|n|h

)
, where (a0nh)n≥1 and (a1nh)n≥1 are

the Fourier coefficients of the initial data (U0
h , U

1
h) and

µn =
4

h2
sin2

(
nπh

2

)
(1 ≤ n ≤ N).

Theorem 4. Let T > 0 and u0 ∈ L2(0, 1) such that

u0(x) =
∑
n≥1

an
√
2 sin(πnx). (21)

There exist h0, c0 ∈ (0, 1) such that for any h ∈ (0, h0), ε ∈ (0, c0h) and any initial data (U0
h , U

1
h) ∈ C2N

of the form

(U0
h , U

1
h) =

 N∑
j=1

a0jh
√
2 sin(njhπ), 0

 (1 ≤ n ≤ N), (22)

and with the property that

(a0nh)n ⇀ (an)n in ℓ2 when h → 0, (23)
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there exists a family of exact controls (vh)h ⊂ C1[0, T ] for problem (18) which is uniformly bounded in

C1[0, T ]. Every limit function v ∈ C[0, T ] of the family (vh)h is a null control for
ut(t, x)− uxx(t, x) = 0 (t, x) ∈ (0, T )× (0, 1)

u(0, t) = 0 t ∈ (0, T )

u(1, t) = v(t) t ∈ (0, T )

u(x, 0) = u0(x) x ∈ (0, 1).

Finally, speaking about the HUM–controls, it is known that these are given by a solution of the

homogeneous adjoint equation which minimizes a suitable quadratic cost. In order to obtain the

minimizer we use the Conjugate Gradient Method and to solve the the differential equation that we

encountered when we applied this method we use the Newmark Method.

Chapter 6 entitled An approximation of the controls for the beam equation is based on the

paper Approximation of the controls for the beam equation with vanishing viscosity which is written

in collaboration with S. Micu and I. Rovenţa [5]. In this chapter we consider a finite difference semi-

discrete scheme for the approximation of the boundary exact controllability problem of the 1–D beam

equation modelling the transversal vibrations of a beam with fixed ends.

utt(t, x) + uxxxx(t, x) = 0 (t, x) ∈ (0, T )× (0, 1)

u(t, 0) = u(t, 1) = uxx(t, 0) = 0 t ∈ (0, T )

uxx(t, 1) = v(t) t ∈ (0, T )

u(0, x) = u0(x) x ∈ (0, 1)

ut(0, x) = u1(x) x ∈ (0, 1).

(24)

It is known that, due to the high frequency numerical spurious oscillations, the uniform (with respect

to the mesh-size) controllability property of the semi–discrete model fails in the natural setting. We

then prove that, by adding a vanishing numerical viscosity, the uniform controllability property is

restored.

We consider N ∈ N∗, a step h = 1
N+1 and a equidistant mesh of the interval (0, 1), 0 = x0 < x1 <

. . . < xN < xN+1 = 1 with xj = jh for any j ∈ [0, N +1]. Our perturbation technique and the central

finite–difference approximation of the space derivates leads to the following semi–discretization of the

beam equation.
u′′j (t) +

uj+2(t)−4uj+1(t)+6uj(t)−4uj−1(t)+uj−2(t)
h4 − ε

u′
j+1(t)−2u′

j(t)+u′
j−1(t)

h2 = 0 1 ≤ j ≤ N, t ∈ (0, T )

u0(t) = 0, uN+1(t) = 0 t ∈ (0, T )

u−1(t) = −u1(t), uN+2(t) = h2vh(t)− uN (t) t ∈ (0, T )

uj(0) = u0j (x), u′j(0) = u1j (x) 1 ≤ j ≤ N,

(25)

where the parameter ε which multiplies the viscous term
u′
j+1(t)−2u′

j(t)+u′
j−1(t)

h2 depends on the mesh

size h as follows

lim
h→0

ε(h) = 0.

We say that (25) is null controllable in time T > 0 if for any ε > 0 and any initial data (U0
h , U

1
h) =

(u0j , u
1
j )1≤j≤N ∈ C2N we find a control vh ∈ L2(0, T ) such that the corresponding solution (uj , u

′
j)1≤j≤N

of (25) verifies

uj(T ) = u′j(T ) = 0 (1 ≤ j ≤ N). (26)
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In this case the moment problem has the following particularities:

λn = µn
ε+ i

√
4− ε2

2
(|n| ≤ N), (27)

and

ân = (−1)n
h√

2 sin(|n|πh)

(
−a1|n|h + λna

0
|n|h − εµ|n|a

0
|n|h

)
(|n| ≤ N),

where (a0nh)n≥1 and (a1nh)n≥1 are the Fourier coefficients of the initial data (U0
h , U

1
h) and

µn =
4

h2
sin2

(
nπh

2

)
(1 ≤ n ≤ N).

Taking into account that |λn| = µ|n| which behave like n2 we come across the same problems as the

ones from the Schrödinger case. The difference in this case is made by the sine function from µn which

divide the family of eigenvalues in two parts, one being finite and consists of the first and the last M

values, while the second one being infinite and containing the rest of the eigenvalues. Moreover, thanks

to the fact that the highest eigenvalues are found in the finite family, two biorthogonal sequences are

needed, one for each family. If for the finite biorthogonal sequence the eigenvalues of our problem are

sufficient for the infinite one we need to add new values with better gap properties (more precisely,

with the same properties as the ones added in the Schrödinger case). Finally, the desire biorthogonal

sequence will be obtain from the union of this two biorthogonals.

The main result of this chapter reads as follows.

Theorem 5. Let T > 0 and (u0, u1) ∈ H = H1
0 (0, 1)×H−1(0, 1) with the Fourier expansions

u0(x) =
∑
n≥1

û0n
√
2 sin(nπx) u1(x) =

∑
n≥1

û1n
√
2 sin(nπx). (28)

There exists h0, c0 > 0 such that for any h ∈ (0, h0) and ε ∈
(
c0

1
T 2h

2 ln 1
h , c0h

)
and any initial data

(U0
h , U

1
h) ∈ C2N of the form

(U0
h , U

1
h) =

 N∑
j=1

a0jh
√
2 sin(njhπ),

N∑
j=1

a1jh
√
2 sin(njhπ)

 (1 ≤ n ≤ N), (29)

and with the properties

(a0nh)n ⇀ (û0n)n in ℓ2 when h → 0, (30)

(a1nh)n ⇀ (û1n)n in ℓ2 when h → 0, (31)

there exists a family of exact controls (vh)h ⊂ L2(0, T ) for problem (25) which converges to a null

control for (24) in L2(0, T ).
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