
Exploring the Design Space of Agent Oriented

Programming Languages

Alex Muscar

November 19, 2013

Abstract

When introduced by Shoham almost two decades ago [15], Agent Oriented Program-

ming (AOP) was intended as a higher level alternative to Object Oriented Program-

ming (OOP) when developing complex software systems. A lot of research has gone

into AOP over the past decades, during which a vast array of approaches for develop-

ing such systems have been proposed. But the promises of the agent community have

failed to materialize and agents have not gained wide acceptance. While the promise it

makes is compelling—greater productivity and a gentle learning curve for novices—it

still did not spark practitioners’ interest. Agents are mostly regarded as experimen-

tation tools for the Artificial Intelligence (AI) community instead of a technology for

developing practical applications.

Motivated by the agent paradigm’s lack of success there are voices that predict its

downfall [6]. At the same time some members of the agent community are trying to

raise awareness to the lack of coherence and perspectives in the community [4, 13].

1



We believe that the lack of success of the agent paradigm is partly due to the agent

community’s failure to cater to more pragmatic needs. Concurrent programming is

an example of a domain in which improving the existing solution would be more than

welcomed. By making concurrent computation easier to express in agent languages, a

whole new area of applications would open up for AOP, from scientific applications like

massively parallel simulations [17] to financial applications like high frequency trading

[7]. We believe that by addressing more pragmatic issues, the agent community has a

chance to get noticed by a broader audience.

Given theAI heritage of the agent communitymost of its effortswent intomodels of

rational agents while the other aspects of agent systems have not been given the atten-

tion they deserve. ere are plenty of formalmodels of agency andmulti-agent systems

to choose from, but things are somewhat bleaker when it comes to tooling, and here we

are referring especially to Agent Oriented Programming Language (AOPL)s [1]. Our

survey of agent oriented programming solutions supports this view: while high-level

approaches are almost exclusively focused on specifying rational agents most practical

approaches are implemented using generic solutions that do not have much to offer

when it comes to expressivity, e.g. JADE¹.

ere is also a social issue with agent languages: most of them are targeting a select

group of individuals with specific needs, most of the time having non scrutable syn-

tax, and lacking features and libraries that real world projects need. is latter aspect

also impacts their adequacy as teaching languages, which would be one way of raising

awareness toward the agent oriented paradigm.

Recently, the situation has started to change somewhat, and the interest in AOPLs

seems to be on an ascending trend with new proposals for AOPLs [5, 11]. Also, real

world applications have been developed using already established languages. More

specifically the Jason language [2] has been used to develop applications ranging from

¹Java Agent Development Framework: http://jade.tilab.com/

2

http://jade.tilab.com/


web applications [10] to mobile applications [14].

Blueprint

e premise of this thesis is that there is still place for a solution that is both high-level

in the sense that it features first order concepts from the problem domain, e.g. agents,

beliefs and plans, yet pragmatic and practical. It is our purpose to investigate such an

approach and its implementation. Since programmers are akin to craftsmen, they can

only be as productive as their tools allow them to be. us programming languages

are a key component of developing any software system, multi-agent systems included.

We will be addressing the issues discussed in this thesis from a programming language

perspective.

emain contribution of this thesis is the design and implementation of B,

an agent oriented programming language targeting the Common Language Runtime

(CLR) framework, which emphasizes concurrency, static safety, ease of use and exten-

sibility. Each of these aspects ads its own contribution to the related fields of AOP and

AOPLs.

Before we give any further details on B’s motivation and characteristics,

it is worth noting that its development was something of an organic process. e ideas

have germinated as an EmbeddedDomain Specific Language (EDSL) for agents embed-

ded in F#, then they transformed in an extension of Jason, and finally have blossomed

in the form of a standalone AOPL.

e concurrent model is an adaptation targeted towards agent languages of the

one presented in [16]. is is a monadic characterization of concurrent tasks, that

favours a more natural way of expressing the composition of concurrently executing

tasks. A related contribution is the use of the thread-pool pattern for the execution of

plan actions, which is in line with the current research in the AOPL world [3].

A second important contribution is the design of a statically typed agent language,

3



which rises the reliability of agent solutions. Again, this is in line with the current re-

search trends in the AOPL community: only recently have solutions featuring static

type systems been featured in AOPL research [12]. Keeping to the domain of static

safety, B features channel protocols, which enforce channel communication

to follow a desired pattern. While present in other languages, B is the first

AOPL to feature them. e language also features asynchronous and asymmetric com-

munication channels which act as the main synchronization points in agent programs.

B’s static type system and checked communication protocols prevent a

part of the errors that can appear in agents developed with existing (latently typed)

agent languages. is makes programs developed in B easier to debug and

extend, making the language suitable for large scale projects, as well as a teaching lan-

guage. Guided by the last aspect, the language features a syntax familiar to program-

mers which have used languages from the C family, thus lowering the learning curve.

Last, but not least, the language can easily interoperate with the underlying framework,

being able to use libraries made available by the host platform.

We have also compared the performance of our implementation of the language

with its main influencing solutions: Jason and JADE. As expected, B’s exe-

cution mode, i.e. asynchronous plans ran in a thread pool, makes it a scalable solu-

tion when compared to JADE. While Jason is close to it—and even faster under some

circumstances—it still has the problem of running out of memory when a high num-

ber of agents is started, thus making B a better solution in such situations.

Overall, B is a viable solution for developing agent systems, ranging from a

few agents and going up to millions of agents.

Our investigation of concurrency in AOPLs was prompted by a larger research

project concerning the development of a dynamic negotiation mechanism and an ac-

companying framework [11, 13, 12]. We decided to use Jason for implementing an ini-

tial prototype, but given the distributed nature of our framework we were soon faced

4



with some of Jason’s limitations. e approach we use builds on our work presented

in [8, 9, 3, 5, 4]. e overall design of the B language is based on some of the

observations presented in [1]. e design considerations of using the thread-pool pat-

tern have been analyzed in [10, 2]. We are currently investigating a possible extension

of this work. Some preliminary efforts have been presented in [6].

While this work does not focus on distributed systems, concurrency is inherently

present in such scenarios, so tackling this problem, even in the context of single agents

or many agents running on the same machine, will benefit them as well.

Our investigation of static safety, besides the obvious motivation of having robust

agent programs that can run in production systems, was prompted by our own experi-

ence teaching agent technologies, namely JADE and Jason, to undergraduate students.

Whilewritten in Java, thus benefiting from its static type system, JADEdoes not provide

any guarantees regarding message flows. One of the most common problems faced by

students while developing JADE programs was that they sent messages in the wrong

order—not respecting the communication protocol—ending with either deadlocked

programs or with cryptic exceptions thrown by the runtime with regard to messages

sent in an inappropriate order. On the other hand, the experience of teaching Jason has

strengthened our opinion that static typing is a key element in writing safe programs.

A second outcome of teaching Jason was that we were able to assess the impact of syn-

tax in the adoption of a new language. Most students, who were only familiar with

languages from the C family, had problems with Jason’s somewhat exotic syntax. Of

course this is a subjective matter, but we believe that by adopting a syntax familiar to

those used with languages from the C family, we will lower the entry barrier.

We also present the sketch of a future development direction for B: trans-

lating B agents to JavaScript. is opens up a new array of opportunities. We

believe that the field of web applications has a great potential when it comes to AOP

since it is a current problem for which there is no definite solution. e myriad of pro-

5



gramming languages targeting the browser is a proof that this niche is still open². It is

our opinion that the AOP paradigm is a viable solution to developing client side appli-

cations thanks to the granular and inherently communicative nature of agents. It can

also prove beneficial to the agent community as a whole, making the agent paradigm

known to wider audiences.

Another beneficial point is that using the browser as a runtime, we make experi-

mentation with the language easier, since a web browser is present on almost any com-

puter. is could lower the entry barrier for potential users of the language. is is

especially interesting in the context of teaching AOP to undergraduate students. A lot

of languages have gone the same route before³⁴⁵.

Contributions

e main contributions of this thesis are:

• An in-depth analysis of the main solutions for developing AOP software solu-

tions, Jason and JADE;

• A concurrencymodel targeted towardAOP languages, based on the formalmodel

presented in [16]. is is a monadic characterisation of concurrent tasks, that

favours a more natural way of expressing the composition of concurrently exe-

cuting tasks;

• An implementation of the previous model on top of the CLR runtime, using the

thread-pool pattern. is approach is in line with the current research in the

AOPL world [3];

²See http://altjs.org/ for a comprehensive list.
³An online Read Eval Print Loop (REPL) for Scala: http://www.simplyscala.com/
⁴An online REPL for Haskell: http://tryhaskell.org/
⁵An online REPL for F#: http://tryfsharp.org/

6

http://altjs.org/
http://www.simplyscala.com/
http://tryhaskell.org/
http://tryfsharp.org/


• e introduction of a static type system for an AOPL, which rises the reliabil-

ity of agent solutions. Again, this is in line with the current research trends in

the AOPL community: only recently have solutions featuring static type systems

been featured in AOPL research [12];

• e introduction of channel protocols, which enforce channel communication to

follow a desired pattern. While present in other languages, B is the first

AOPL to feature them;

• e use of asynchronous and asymmetric communication channels which act

as the main synchronisation points in agent programs and enable fine grained

capabilities [9, 8], thus tapping into the field of security in agent systems;

• A syntax inspired from the C family of languages, to make B more ac-

cessible to new programmers, while keeping the high level concepts of agents and

beliefs;

• A comparative analysis of our proposed solutionwith itsmain inspiration sources,

Jason and JADE, which are at the same time the main players in the AOP world;

The Author’s Publications

[1] Muscar, Alex. Agent Oriented Programming: from Revolution to Evolution

(DBLP). In ICCSW, pages 52–58, 2011.

[2] Muscar, Alex. Investigating F# as a development tool for distributed multi-agent

systems. 752:32–36, 2011.

[3] Muscar, Alex. Towards a Pragmatic Approach of Agent Development, 6th South

East European Doctoral Student Conference. In 6th South East European Doctoral

Student Conference, pages 320–326, 2011.

7



[4] Muscar, Alex. Agents for the 21st Century: the Blueprint Agent Programming

Language. In Online proceedings of the 1st International Workshop on Engineering

Multi-Agent Systems, pages 255–270, 2013.

[5] Muscar, Alex. Extending Jason with Promises for Concurrent Computation

(Springer, DBLP). In Giancarlo Fortino, Costin Bădică, Michele Malgeri, and

Rainer Unland, editors, Intelligent Distributed Computing VI, volume 446 of Stud-

ies in Computational Intelligence, pages 41–50. Springer Berlin Heidelberg, 2013.

[6] Muscar, Alex. Join Patterns for Concurrent Agents (position paper) (ISI). SCPE

journal, 43(3):181–187, October 2013.

[7] Muscar, Alex. Agents in the Browser – Using Agent Oriented Programming for

Client Side Development (Springer). In Amelia Badica, Bogdan Trawinski, and

NgocanhNguyen, editors,RecentDevelopments inComputationalCollective Intel-

ligence, volume 513 of Studies in Computational Intelligence, pages 79–90. Springer

International Publishing, 2014.

[8] Muscar, Alex and Costin Bădică. A Functional Approach to Agent Development:

Research Agenda (IEEE). In Computer Software and Applications Conference Work-

shops (COMPSACW), 2011 IEEE 35th Annual, pages 380–385, 2011.

[9] Muscar, Alex and Costin Bădică. A Functional Take on Multi-Agent Systems Posi-

tion Paper. AIP Conference Proceedings, 1389(1):865–868, 22 September 20 2011.

[10] Muscar, Alex and Costin Bădică. Investigating F# as a development tool for dis-

tributed multi-agent systems (extended version) (IEEE). Systemeory, Control, and

Computing (ICSTCC), pages 1 – 6, 14-16 Oct. 2011 2011.

[11] Muscar, Alex and Costin Bădică. Exploring the Design Space of a Declarative

Framework for Automated Negotiation: Initial Considerations (Springer, DBLP).

In AIAI (1), pages 264–273, 2012.

8



[12] Muscar, Alex and Costin Bădică. Towards a declarative framework for the spec-

ification of agent-driven auctions. Engineering Intelligent Systems Journal, 21(2/3),

September 2013.

[13] Muscar, Alex, Laura Surcel, and Costin Bădică. Using Jason to Develop Declara-

tive Prototypes of Automated Negotiations (DBLP). In BCI (Local), pages 136–138,

2012.

Bibliography

[1] Costin Badica, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanovic.

Software agents: Languages, tools, platforms. Comput. Sci. Inf. Syst., 8(2):255–298,

2011.

[2] Rafael H. Bordini, Jomi Fred Hübner, and Renata Vieira. Jason and the golden

fleece of agent-oriented programming. In Rafael H. Bordini, Mehdi Dastani, Jür-

gen Dix, and Amal El Fallah-Seghrouchni, editors, Multi-Agent Programming, vol-

ume 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations,

pages 3–37. Springer, 2005.

[3] Rafael C. Cardoso, Jomi Fred Hübner, and Rafael H. Bordini. Benchmarking com-

munication in actor- and agent-based languages. In Maria L. Gini, Onn Shehory,

Takayuki Ito, and Catholijn M. Jonker, editors, AAMAS, pages 1267–1268. IFAA-

MAS, 2013.

[4] Cristiano Castelfranchi. Bye-bye agents? not. IEEE Internet Computing, 14:93–96,

March 2010.

[5] Claudia V. Grigore and Rem W. Collier. Af-raf: an agent-oriented programming

language with algebraic data types. In Proceedings of the compilation of the co-

located workshops on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, &#38;

9



VMIL’11, SPLASH ’11 Workshops, pages 195–200, New York, NY, USA, 2011.

ACM.

[6] Carl Hewitt. Perfect disruption: e paradigm shift from mental agents to orgs.

IEEE Internet Computing, 13:90–93, January 2009.

[7] Technical Committee International Organization of Securities Commissions.

Regulatory issues raised by the impact of technological changes on market in-

tegrity and efficiency. Technical report, International Organization of Securities

Commissions, 2011.

[8] Mark S.Miller, Ka-Ping Yee, and Jonathan Shapiro. CapabilityMyths Demolished.

Technical report, Systems Research Laboratory, Johns Hopkins University, 2003.

[9] Mark Samuel Miller. Robust composition: towards a unified approach to access con-

trol and concurrency control. PhD thesis, Johns Hopkins University, Baltimore,

MD, USA, May 2006. AAI3245526.

[10] Mattia Minotti, Giulio Piancastelli, and Alessandro Ricci. Agent-oriented pro-

gramming for client-side concurrent web 2.0 applications. In José Cordeiro,

Joaquim Filipe, Wil Aalst, John Mylopoulos, Michael Rosemann, Michael J. Shaw,

and Clemens Szyperski, editors, Web Information Systems and Technologies, vol-

ume 45 of Lecture Notes in Business Information Processing, pages 17–29. Springer

Berlin Heidelberg, 2010.

[11] Alessandro Ricci and Andrea Santi. Designing a general-purpose programming

language based on agent-oriented abstractions: the simpal project. In Proceed-

ings of the compilation of the co-located workshops on DSM’11, TMC’11, AGERE!’11,

AOOPES’11, NEAT’11, &#38; VMIL’11, SPLASH ’11 Workshops, pages 159–170,

New York, NY, USA, 2011. ACM.

10



[12] Alessandro Ricci and Andrea Santi. Typing multi-agent programs in simpal. In

Mehdi Dastani, F. Hübner, Jomi, and Brian Logan, editors, Programming Multi-

Agent Systems, volume 7837 of Lecture Notes in Computer Science, pages 138–157.

Springer Berlin Heidelberg, 2013.

[13] Andrea Santi. From objects to agents: Rebooting agent-oriented programming

for software development. Proceedings ofe 12th EuropeanAgent Systems Summer

School (EASSS 2010), 2010, 2010.

[14] Andrea Santi, Marco Guidi, and Alessandro Ricci. Jaca-android: An agent-based

platform for building smart mobile applications. In Mehdi Dastani, Amal El

Fallah-Seghrouchni, Jomi Hübner, and João Leite, editors, LADS, volume 6822

of Lecture Notes in Computer Science, pages 95–114. Springer, 2010.

[15] Yoav Shoham. Agent-oriented programming. Artif. Intell., 60:51–92, March 1993.

[16] Don Syme, Tomas Petricek, and Dmitry Lomov. e f# asynchronous program-

mingmodel. In Ricardo Rocha and John Launchbury, editors, PADL, volume 6539

of Lecture Notes in Computer Science, pages 175–189. Springer, 2011.

[17] Gaku Yamamoto, Hideki Tai, and Hideyuki Mizuta. A platform for massive agent-

based simulation and its evaluation. InNadeem Jamali, Paul Scerri, andToshiharu

Sugawara, editors,MassivelyMulti-Agent Technology, volume 5043 of LectureNotes

in Computer Science, pages 1–12. Springer Berlin Heidelberg, 2008.

11


