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A central problem in differential geometry is relating algebraic properties
of the Riemann curvature tensor to the geometry of the underlying manifold.
As the curvature tensor R is in general difficult to deal with, we study several
natural operators associated to R. Such examples are the Jacobi operator and
other operators which are defined by the Jacobi operator, like the higher order
Jacobi operator or the conformal Jacobi operator.

The Thesis contains an introduction, five chapters and the bibliography. The
chapters are

I. Semi-Riemannian Osserman metric tensors on tangent and cotangent bun-
dles of a Riemannian manifold

II. Generalized Osserman manifolds
III.Conformal Osserman manifolds
IV.Lorentz Osserman manifolds
V.Osserman condition on solvable Lie algebra of Iwasawa type.
In the first chapter we put forward some aspects of the geometry of the

tangent bundle, following the monographies [8],[20] .If M is a differentiable
manifold of dimension n, of class C∞ , we successively construct the vertical
and complete lifts on functions, 1-forms and then on tensorial fields.

In the above mentioned monographies, it is established that if M is a Rie-
mannian manifold with the metric g, which has the local coordinates gij in the
neighborhoods U ⊂ M , then

I gijdxi ⊗ dxj II 2gijdxi ⊗ δyj III gijδy
i ⊗ δyj

are quadratic forms globally defined on the tangent bundle TM over M. In more
details, let π : TM → M be the canonical projection of TM on M. Then in the
neighborhood π−1(U) of TM, δyh = dyh + yiΓh

ijdxj represents the K.Yano and
S. Ishihara‘s 1-forms, where Γh

ij(x), x ∈ U, are the Christoffel‘s symbols formed
with gij . The metrics
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II 2gijdxi ⊗ δyj

I + II gijdxi ⊗ dxj + 2gijdxi ⊗ δyj

I + III gijdxi ⊗ dxj + gijδy
i ⊗ δyj

II + III 2gijdxi ⊗ δyj + gijδy
i ⊗ δyj

are all nonsingular and can be defined as Riemannian or semi-Riemannian met-
rics on the tangent bundle TM over M. The metric II coincides with the com-
plete lift gC of the metric g on the tangent bundle and the metric I represents
the vertical lift gV of the metric g from the manifold to the tangent bundle.

We may remark that the metric

0

G= gijdxi ⊗ dxj + 2gijdxi ⊗ δyj + gijδy
i ⊗ δyj

i.e.I+II+III has a singular matrix
(

gij gij

gij gij

)
.Consequently,(TM,

0

G) cannot

lead to more general theories then we have studied in the thesis.However, if we
consider the metric

G = agijdxi ⊗ dxj + 2bgijdxi ⊗ δyj + cgijδy
i ⊗ δyj

with a, b, c ∈ R, and ac−b2 6= 0, then, according to a result due to M.Anastasiei,
this is a semi-Riemannian metric on TM. The problem of geometrizing these
metrics represents one of my future objectives.

Let (M, g) be a semi-Riemannian manifold and let

S−p (M) = {Z ∈ TpM | g(Z, Z) = −1}

S+
p (M) = {Z ∈ TpM | g(Z, Z) = 1}

Sp(M) = {Z ∈ TpM | |g(Z, Z)| = 1} = S−p (M) ∪ S+
p (M)

be the sets of unit timelike, spacelike and nonnull vectors on TpM. Then

S−(M) = ∪p∈MS−p (M) = {Z ∈ TM | g(Z, Z) = −1}

S+(M) = ∪p∈MS+
p (M) = {Z ∈ TM | g(Z,Z) = 1}

S(M) = ∪p∈MSp(M) = {Z ∈ TM | |g(Z,Z)| = 1}

are called the unit timelike, spacelike and nonnull bundle of (M, g).
In the following definitions, (M, g) is considered a semi-Riemannian mani-

fold.
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Definition 1.2.1 If Z ∈ S(M), then the operator RZ : Z⊥ → Z⊥ defined
by RZX = R(X, Z)Z is called the Jacobi operator with respect to Z.

Definition 1.2.2 The manifold (M, g) is called timelike Osserman at p ∈ M
if the characteristic polynomial of RZ is independent of Z ∈ S−p (M). (M, g) is
called spacelike Osserman at p if the characteristic polynomial of RZ is inde-
pendent of Z ∈ S+

p (M).
In [3], p.4, is proved that (M, g) is timelike Osserman at p if and only if

(M, g) is spacelike Osserman at p. This fact leads to the following:
Definition 1.2.3 . (M, g) is called Osserman at p if (M, g) is both timelike

and spacelike Osserman at p.
Definition 1.2.5 . The manifold (M, g) is called globally Osserman if the

characteristic polynomial of RZ is independent of Z ∈ S−(M) or Z ∈ S+(M).
In the sequel, we study the metric I+II on the tangent bundle of a given

Riemannian manifold (M, g). In the bellow theorem by the Osserman condition
it is understood the globally Osserman condition.

Theorem 1.2.1[18] Let (M, g) be a Riemannian manifold. Then the tan-
gent bundle equipped with the metric I +II is a semi-Riemannian Osserman
manifold with semi-defined metric tensor if and only if (M, g) is Osserman
manifold with null eigenvalues of the Jacobi operator.

Remark 1.2.4 The result of the theorem 1.2.1. is still valid if we change the
metric I+II on the tangent bundle with the deformed complet lift metric tensor
gΦ = gC + ΦV of the Riemannian metric tensor g, where Φ is a symmetric
(0, 2)−tensor field on (M, g) and ΦV denote the vertical lift of Φ.

We will consider the 2n−dimensional space R 2n with coordinates (x, y) =
(x1, ..., xn, y1, ..., yn) ,where (x1, ..., xn) are the usual coordinates on R n. Con-
sider the deformed complet lift metric gΦ,which is expressed by

gΦ =
n∑

i=1

dxi ⊗ dyi+
n∑

i,j=1

Φij(x)dxi ⊗ dxj

Of the six essential components of the curvature tensor on (R2n, gΦ), the only
nonvanishing component is

R(∂x
i , ∂x

j )∂x
k = −1

2
(Φil/j/k + Φjk/i/l − Φik/j/l − Φjl/i/k)∂y

l

where ∂x
i = ∂

∂xi , ∂
y
i = ∂

∂yi , Φik/j/l = ∂2Φik

∂xj∂xl .
In the case in which n = 2p, we define on R2p a complex structure by

setting J∂x
1 = ∂x

2 , ..., J∂x
2p−1 = ∂x

2p and we consider JC the complete lift of this
structure on R 2n = TR n.

Lemma 1.4.1.[17] Let X =
2p∑

i=1

(αi∂
x
i +α2p+i∂

y
i ) be a vector field on TR2p.

Then, the holomorphic sectional curvature with respect to every nondegenerate
planes

{
X,JCX

}
is given by
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H(X) = −

2p∑
i,j,k,l=1

αiβjαkβl(Φil/j/k + Φjk/i/l − Φik/j/l − Φjl/i/k)

2(2
2p∑

i=1

αiα2p+i+
2p∑

i,j=1

αiαjΦij)2

where β2j−1 = −α2j , β2j = α2j−1, j = 1, 2, ..., p.
Corolar 1.4.1. Let Φ be an Hermitian symmetric (0, 2)−tensor field on

(R2, g, J). Then (R4, gΦ, JC) is an Osserman semi-definite Kähler manifold and
the holomorphic sectional curvature has the sign of ∆Φ11, where ∆ denotes the
Laplacian on R 2.

In the second chapter we will study the higher order Jacobi operator for
some semi-Riemannan metrics on manifold M = R2p. The deformed complete
metric lift of usual metric on Rp, when its coefficients Φij = Φij(x) depend only
on x, is obtained.

The notion of generalized Osserman manifold in the context of Riemannian
geometry is due to G. Stanilov and V. Videv in [13] and their results were
extended to semi-Riemannian geometry in [7]. The Jacobi operator can be
generalized as it follows. Let π be a nondegenerate k-plane in TpM with or-
thonormal basis {e1, ..., ek}, where (M, g) is a Riemannian manifold of signature
(r, s). The generalized Jacobi operator JR(π) is defined by

JR(π) =
k∑

i=1

g(ei, ei)R(·, ei)ei

The operator JR(π) is well defined (i.e. it is independent of the choice of or-
thonormal basis {e1, ..., ek} and self-adjoint. We say that a pair of integers (r, s)
is an admissible pair for TpM if 0 ≤ r ≤ p , 0 ≤ s ≤ q and 1 ≤ r + s ≤ p+ q− 1.
This means that the Grassmannian Gr(r,s)(TpM) of non-degenerate planes in
TpM of signature (r, s) is non-empty and does not consist of a single point.

Let (r, s) be an admissible pair. We say that (M, g) is Osserman of type
(r, s) in p ∈ M if the eigenvalues of the operator JR(π) do not depend on the
choice of plane π ∈ Gr(r,s)(TpM). P. Gilkey shows that if (M, g) is Osserman
of type (r, s) then it is Osserman of type (

∼
r,
∼
s) for all admissible pairs (

∼
r,
∼
s)

satisfying r + s =
∼
r +

∼
s [6]. Thus, only the dimension k = r + s of planes π is

relevant and we simply talk about k−Osserman manifold. A semi-Riemannian
manifold (M, g) is said to be a k−Osserman manifold if for all points p ∈ M ,
(M, g) is k−Osserman in p with the eigenvalues structure of JRp(·) independent
of the chosen point p.

Let M = R2p with coordinates (x, y) = (x1, ..., xp, y1, ..., yp). Then X =
Span1≤i≤p {∂x

i }, Y = Span1≤i≤p {∂y
i } define two distributions of TM . The

splitting TM = X ⊕Y is just the usual splitting TR2p = TRp ⊕ TRp. Let Φ be
an (0, 2) symmetric tensor field, where Φij are C∞−functions. Then we define
a semi-Riemannian metric of neutral signature (p, q) by setting
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gΦ(x, y) =
∑

i

dxi ⊗ dyi+
∑

i,j

Φij(x, y)dxi ⊗ dxj (2.1)

Proposition 2.2.1. The components of the curvature tensor of the metric
gΦ on M are given by

R(∂x
i , ∂x

j )∂x
k = ( 1

2Φik |l|j − 1
2Φjk |l|i + 1

4Φjk |s Φis |l − 1
4Φik |s Φjs |l)∂x

l +
+[ 14Φjk |s (Φsd|i+ Φis|d − Φdi|s) + 1

4Φid |l (Φjl|k+ Φlk|j − Φkj|l)−
− 1

4Φik |s (Φsd|j + Φjs|d − Φdj|s)− 1
4Φjd |l (Φil|k + Φlk|i − Φki|l)−

− 1
4Φjk |s Φis |l Φld + 1

4Φik |s Φjs |l Φld − 1
4Φjk |s Φid |l Φsl+

+ 1
4Φik |s Φjd |l Φsl + ( 1

2Φjk |s|i − 1
2Φik |s|j)Φsd+

+ 1
2 (Φjd|k|i − Φkj|d|i − Φid|k|j + Φki|d|j)]∂

y
d .

R(∂x
i , ∂x

j )∂y
a = [ 12 (Φjl |a|i − 1

2Φil |a|j) + 1
4 (Φjs |a Φil |s −Φis |a Φjl |s)]∂y

l

R(∂x
i , ∂y

a)∂y
b = − 1

2Φid |b|a ∂y
d (2.6)

R(∂y
a , ∂x

j )∂x
k = [ 14Φjk |s Φsl |a + 1

2Φjk |s|a Φsl − 1
4Φks |a Φjl |s +

+ 1
2 (Φjl|k |a −Φkj|l |a)]∂y

l − 1
2Φjk |s|a ∂x

s

R(∂y
a , ∂y

b )∂x
k = R(∂y

a , ∂y
b )∂y

c = 0,
where Φij|k = ∂x

kΦij , Φij |a= ∂y
aΦij .

Theorem 2.2.1.We can choose the functions Φij=Φij(x, y) such that the
only nonvanishing component of the curvature tensor in the proposition 2.2.1.
is

R(∂x
i , ∂x

j )∂x
k = Cl

kji∂
y
l (2.7)

We obtain in this way metrics gΦ of the (2.1)-type, where the the functions
Φij are given by

Φij(x, y) =
{

fii(x) + yigi(xi), if i = j
fij(x), if i 6= j

(2.11)

Theorem 2.2.3. If p ≥ 2 then (M, gΦ) is k Osserman for every admissible
k, in the case in which Φij are given by ( 2.11).

In the work [4] the authors consider a family of metrics of the form

g(f1,f2) = y1f1(x1, x2)dx1 ⊗ dx1 + y2f2(x1, x2)dx2 ⊗ dx2 + (2.16)

+a(dx1 ⊗ dx2 + dx2 ⊗ dx1) +
+b(dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2)

where a,b ∈ R and f1, f2are smooth real valued functions satisfying the condition

∂f1

∂x2
=

∂f2

∂x1
(2.17)

In the particular case in which f1(x1, x2) = f1(x1) and f2(x1, x2) = f2(x2),
the condition (2.17) is trivially verified and we are lead to either locally sym-
metric or non-locally symmetric semi-Riemannian manifolds, depending on the
conditions 1)-4) in the theorem 3 of [4].These metrics are of (2.1.)- type with
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the conditon (2.11). In this way, we obtain a new class of spaces, which we
have called locally symmetric generalized Osserman spaces, with the 2-nilpotent
generalized Jacobi operator.

In the third chapter we construct several examples of semi-Riemannian man-
ifolds, which are Osserman in a given point. Let V be a vector space. These
examples are essential because they determine the family of curvaturelike tensors
constructed by P.Gilkey by using Clifford modules structures. A quadrilinear
map F : V × V × V × V → R is called curvaturelike if it satisfies the sym-
metries of the curvature tensor and the first Bianchi identity. Let 〈., .〉 be a
scalar product on the vector space V. We say that F : V × V × V → V is
called curvaturelike trilinear map on V if the quadrilinear map F defined by
F(X,Y, Z, W ) = 〈F (X,Y )Z, W 〉 is curvaturelike for every X, Y, Z,W in V.

Let (M, g) be a Riemannian manifold of dimmension m, ∇− the Levi-Civita
connection. The curvature tensor R is defined by setting

R(X, Y, Z, W ) = g(R(X, Y )Z,W ) = g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, W )

where R is the curvature operator of (M, g).
If {ei} is a local orthonormal frame for the tangent bundle, the Ricci tensor

and the scalar curvature are given by

ρ(ei, ej) =
∑

k

R(ei, ek, ek, ej)

respectively τ =
∑
i

ρ(ei, ei). The Ricci operator is defined by setting

ρ(ei) =
∑

j

ρ(ei, ej)ej .

We introduce the tensors L and R0 by setting

L(X, Y )Z = g(ρY, Z)X − g(ρX, Z)Y + g(Y,Z)ρX − g(X, Z)ρY

R0(X, Y )Z = g(Y,Z)X − g(X, Z)Y

In the following, we study curvaturelike operators of the type

V (X, Y )Z = R(X, Y )Z + ατR0(X, Y )Z + βL(X, Y )Z, (3.2)

where α and β are constants. Let Φ be an almost complex Hermitian structure
on TM (m = 2n) and

RΦ(X, Y )Z = g(ΦY, Z)ΦX − g(ΦX, Z)ΦY − 2g(ΦX, Y )ΦZ.

We say that (M, g) is a complex space form if R = λ0R0 + λRΦ, for smooth
functions λ0 and λ, where λ 6= 0.
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Theorem3.2.1. Let us take (M, g, Φ), where we assume that dim M =
m ≥ 8, which satisfies V = λ0R0 + λRΦ, λ 6= 0, V being defined by (3.2.) with
β = − 1

m−2 . If {X, ΦX, Y, ΦY, Z, ΦZ} is an orthonormal set, then
1) ΦΦ;X = −Φ;XΦ.
2) Φ;X and ΦΦ;X are skew-adjoint.
3) g(Φ;ZY − Φ;Y Z, X) = 0.
4) Φ;XX = 0 ; Φ;XΦX = 0.
5) Φ;XY + Φ;Y X = 0.
6) ∇Φ = 0.
7) (M, g, Φ) is a complex space form.
By Φ;X we noted the covariant derivative of Φ with respect to X.
Remark 3.2.1 If we choose α = 1

(m−1)(m−2) in (3.2), then V becames the
Weyl curvature operator.From here it is realised how important are the consid-
ered operators. So, we are lead to the following

Definition 3.2.1 The conformal Jacobi operator is the Jacobi operator as-
sociated to the Weyl curvature operator, i.e.

JW (X)(Y ) = W (Y, X)X

We say that (M, g) is conformally Osserman if the eigenvalues of JW are
constant on the set of unit vectors in TpM.

Finally, we obtain a characterization of the conformal Osserman manifolds
in the sense due to Chi[1] for Riemannian Osserman manifolds.

In the fourth chapter, we study Lorentzian manifolds which are semi-Riemannian
manifolds of index 1. This chapter make the subject of the work [19]. There are
certain differences between timelike vectors and spacelike vectors. An essential
difference is that the orthogonal space to a timelike vector has definite induced
inner product, unlike to a spacelike vector which has semi-definite induced inner
product on its orthogonal space.

In the case of a Lorentzian manifold M, the following conditions are equiv-
alent :

a) M is spacelike Osserman in p ∈ M.
b) M is timelike Osserman in p ∈ M.
c) M has constant sectional curvature at a point p ∈ M.
Theorem 4.1.2. Let M be the Lorentzian manifold M = N × R, with

the product metric g = gN − dt2, of dim M ≥ 4, where (N, gN ) is a Rieman-
nian manifold. If ‖W‖g = 0, then M is spacelike Lorentz Osserman manifold,
respectively timelike Lorentz Osserman manifold.

Although the orthogonal space to a null vector is degenerate, by quotienting
out its degenerate part, we obtain a definite inner product quotient space. This
leads us to define the Jacobi operator with respect to a null vector. Next, using
the concept of null isotropy, defined in [2], we have

Remark 4.1.1 The semi-definite semi-Riemannian manifold M of dimen-
sion m ≥ 3 is null isotropic at p ∈ M if and only if the Weyl curvature tensor
W = 0 at p ∈ M.
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Lemma 4.1.3. Let M1 and M2 be semi-Riemannian manifolds with M =
M1 ×M2 a semi-definite semi-Riemannian manifold and dim M ≥ 3. Then M
is null isotropic if dim M1 = 1, dim M2 ≥ 3 and M2 is of constant curvature.

The following remark is a consequence of the previous remark 4.1.1. and the
lemma 4.1.3.

Remark 4.1.2. Because in M = N × R we have dimR = 1 and, according
to theorem 4.1.2, N has a constant curvature, it follows that the considered
Weyl‘s tensor in the same theorem 4.1.2. vanishes.

In order for us to apply the theories exposed in the previous chapters, we
analize in the chapter V the Osserman condition on solvable Lie groups of Iwa-
sawa type.

Definition 5.1.5. A solvable Lie algebra s with inner product 〈., .〉 is a
metric Lie algebra of Iwasawa type if it satisfies the conditions

1) s = a ⊕ n, where n = [s, s] and the complement orthogonal of n, a, is
abelian.

2) All operators adH , H ∈ a, are symmetric.
3) For some H0 ∈ a, adH0 |ahas positive eigenvalues.
Let M be a Riemannian manifold, R be its curvature tensor and RX be the

associated Jacobi operator. If RX has constant eingenvalues, independently on
X ∈ TpM and p ∈ M , then we say that the manifold satisfies the Osserman
condition. This condition is satisfied by rank 1 symmetric spaces, because they
are 2-homogeneous, hense the group of the local isometries acts transitively on
the bundle of the unit sphere.

The simply connected Lie group S, with the Lie algebra s, and the left in-
variant metric induced by the scalar product 〈·, ·〉 will be called of Iwasawa type.
If s is a Lie algebra of Iwasawa type, which satisfies the Osserman condition,
then S has a constant negative sectional curvature and dim a = 1. Whenever
dim a = 1, we say that the Lie algebra is of rank 1. We note by z the center of n
and by v its orthononal complement relative to the metric restricted to n. Using
the adjoint representation adH , where H ∈ a, and the map jZ : v → v defined
by jZX = (adX)∗Z, where (adX)∗ is the adjoint operator of adX , we obtain the
formulas of the Jacobi operators on the Lie groups of Iwasawa type.Then we
characterize the simply connected Lie group S, with the left invariant metric
associated to a Lie algebra of Iwasawa type s, for which n = [s, s] is 2-nilpotent,
and satisfies the Osserman conditions. Finally, we have studied the generalized
Jacobi operator on solvable Lie algebras of Iwasawa type.
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