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Craiova - January 2005



1. Introduction

I. Physical origin of the equation. In this thesis we study viscous Hamilton-Jacobi equa-
tions of the form:

(V HJ)

{
∂u

∂t
−∆u = a|∇u|p in (0,+∞)× Ω,

u(0) = µ0 in Ω.

with homogeneous Dirichlet boundary condition :

(D) u = 0 on (0,+∞)× ∂Ω,

or homogeneous Neumann boundary condition:

(N)
∂u

∂ν
= 0 on (0,+∞)× ∂Ω.

The domain Ω ⊂ RN is an open and bounded set with smooth boundary ∂Ω. For x ∈ ∂Ω, we
denote by ν(x) the unit outward to the boundary ∂Ω in the point x. The parameters a, p will
be chosen such that a ∈ R, a 6= 0, p > 0 and the initial data µ0 is a bounded Radon measure on
Ω, or a measurable function in the Lebesgue space Lq(Ω), q ≥ 1, or a continuous function on Ω.

The equations (V HJ) possess both mathematical and physical interest. Indeed, it is the
simplest example of parabolic PDE with a nonlinearity depending on the first order spatial
derivatives of the solution. On the other hand these equations appears in the stochastic and
deterministic control theory as well as in the large deviations theory (see [3, 13, 14, 16]). More
precisely if we denote by Pε(t, x) the probability that a diffusion process starting from x at
time t with a small noise of ε > 0 intensity, remains in the bounded domain Ω ∈ RN until the
fixed time T > 0, then Pε(t, x) satisfies a linear parabolic equation in [0, T ]×Ω with boundary
conditions:

Pε(t, x) = 0, for (t, x) ∈ [0, T ]× ∂Ω and Pε(T, x) = 1 for x ∈ Ω.

The large deviation theory deals with the behavior of Pε in the neighborhood of 0 as ε goes to
0. A classical method which may answer to this question is to consider the function uε defined
by:

uε = −ε log Pε.

If the diffusion process is the Brownian motion with (2ε
1
2 ) intensity, then the function uε

satisfies the equation: 
∂uε

∂t
− ε∆uε = |∇uε|2 in (0,+∞)× Ω,

uε = +∞ on (0,+∞)× ∂Ω,
uε(T ) = 0 in Ω,

This model corresponds to (V HJ) problem with Dirichlet boundary condition. For the Neu-
mann condition we may consider diffusion processes with reflexive trajectories on the boundary
Ω.

We mention that these equations appear also in the physical theory of growing surfaces due to a
variety of mechanism. One such a mechanism is Ballistic deposition. A simple-minded picture
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of this mechanism is that of particles each moving along a straight path approaching a surface
and randomly attaching themselves. This point of view is considered appropriate for vapor
deposition and the sputter deposition of thin films of aluminium and rare earth metals. The
accepted starting point for a continuum approach to this mechanism is the partial differential
equation:

(KPZ1)
∂h

∂t
= γ∆h + λ|∇h|2 + η.

With this model, surface growth relative to a reference plane, which may move with a constant
velocity, is simulated. The unknown h denotes the height of the surface above the plane and t

denotes the time. The first term on the right-hand side of equation (KPZ1) describe a diffusive
relaxation in which γ may be thought of as an effective surface tension. The second term on
the right-hand side arises from the growth process. The constant λ in this term is a measure
of the net rate of deposition. Finally, the last term on the right-hand side is produced by a
stochastic force with zero mean and short-range correlation. In its simplest form η signifies
the white noise with Gaussian distribution. The above model was first proposed by Kardar,
Parisi and Zhang [19], and has since been referred as KPZ equation.
Taking into account further surface growth effects J.Krug-H.Spohn, [20] extended the model
(KPZ1) to:

(KPZ2)
∂h

∂t
= γ∆h + λ|∇h|p + η.

With any value p > 0, (KPZ2) has designated the generalized KPZ equation. In particular,
without the noise term η it is known as the generalized deterministic KPZ equation.

II. Some References. In this paragraph we summarize the main contributions done in the
study of equation of (VHJ) type or related problems to this equation.
In the whole space RN , the Cauchy problem has been intensively studied. L.Amour-M.Ben-
Artzi [2] and M. Ben-Artzi [4] had proved the global in time existence of classical solutions
for the Cauchy problem (V HJ) as long as p ≥ 1 and the initial data µ0 ∈ C2(RN ) is bounded
together with her first and second derivatives. Later on B.Gilding-M.Guedda-R.Kersner [18]
extended these results to µ0 ∈ C(RN ) ∩ L∞(RN ) and p > 0.
If the initial data µ0 is not a smooth one, more exactly if µ0 ∈ Lq(RN ), 1 ≤ q < ∞ or is
a bounded Radon measure, M.Ben-Artzi-Ph. Souplet-F.B.Weissler in [6] and S.Benachour-
Ph.Laurençot in [10] established some existence and non-existence results of weak solution for
problem (V HJ) depending on parameter a ∈ R, a 6= 0 and the exponent p ≥ 1. Beside the
existence and uniqueness of solutions for the Cauchy problem, S. Benachour-Ph. Laurençot-
D. Schmitt in [8], S. Benachour-Ph. Laurençot-D. Schmitt-Ph. Souplet in [9], B. Gilding-M.
Guedda-R. Kersner in [18], M.Ben-Artzi-H.Koch in [5] and Ph.Laurençot-Ph.Souplet in [21]
studied the long time behavior of these solutions.
In bounded domains Ω ⊂ RN , the problem (V HJ) with Dirichlet boundary condition (D) or
Neumann boundary condition (N) has been little investigated.
We can mention here the paper of N. Alaa [1], who proved the existence and uniqueness of
mild solutions when the initial data is a bounded Radon measure and p ∈ [1, N+2

N+1). Another
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important contribution is the work of M.G.Crandall-P.L.Lions-P.E.Souganidis [11]. Using the
theory of order preserving semigroup they proved the existence of a universal bound for the
positives solutions of the Cauchy-Dirichlet problem as p > 1, a < 0 and µ0 a positive and
continuous function which vanishes on the boundary ∂Ω (Theorem 2.1, p.172 in [11]). Finally,
we cite a recent result of Ph. Souplet [24], who proved the blow-up of the gradient of solutions
for a > 0, p > 2 and initial data ”large enough”.

2. Main Results

This work continue the study of the Cauchy-Dirichlet problem [(V HJ) + (D)] and Cauchy-
Neumann problem [(V HJ) + (N)], trying to clarify questions like existence of weak solutions,
uniqueness, regularity and long time behavior of solutions as t goes to +∞. A particular
interest is given to problems [(V HJ) + (D)] and [(V HJ) + (N)] for irregular initial data
µ0. In the sequel Mb(Ω) is the space of bounded Radon measures. We denote by (et∆)t≤0

and (S(t))t≥0 the semigroup of contraction in Lq(Ω), q ≥ 1 related to the heat equation with
homogeneous Dirichlet or Neumann boundary condition (see [23]). As we can see in [7] and [12]
this semigroup can be extended, in a natural way, to the space of bounded Radon measures,
Mb(Ω).

I. Cauchy-Dirichlet problem for viscous Hamilton-Jacobi equation. Let us introduce
first two concepts of weak solutions for problem [(V HJ)+(D)] as p ∈ (0,∞) and a ∈ R, a 6= 0.

Definition I.1. Let µ0 ∈Mb(Ω). A weak solution of problem [(V HJ)+(D)] is a function u ∈
C((0,∞);L1(Ω)) ∩ L1(0, T ;W 1,1

0 (Ω)) such that |∇u|p ∈ L1(QT ) for all T > 0 and satisfying:
∂u

∂t
−∆u = a|∇u|p in D′(QT ),

u(t) ⇀
t→0

µ0 weakly in Mb(Ω).
(2.1)

Definition I.2. Let µ0 ∈Mb(Ω). A mild solution of problem [(V HJ)+(D)] is a function u ∈
C((0,∞);L1(Ω)) ∩ L1(0, T ;W 1,1

0 (Ω)) such that |∇u|p ∈ L1(QT ) for all T > 0 and satisfying:

u(t) = et∆µ0 + a

t∫
0

e(t−s)∆|∇u|p(s) ds. (2.2)

The two definitions above are equivalent, thus any mild solution will be called weak solution.
We can state now the main results of Chapter I.
The first theorem deals with the case 0 < p < 1. To our knowledge this case have never been
investigated on bounded domains.

Theorem I.1. Let a ∈ R, a 6= 0, µ0 ∈Mb(Ω) and 0 < p < 1. Then the problem [(V HJ)+(D)]
admits at least one weak solution.
This solution is unique in the following cases.

a) If 0 < p < 2
N+1 and µ0 ∈Mb(Ω),

b) If 2
N+1 ≤ p < 1 and µ0 ∈ Lq(Ω) with q > pN

2−p .

4



The proof is given in four steps. First, using Schauder fixed point Theorem we prove the local
existence of a solution, then we give a regularity result which allows us to extend the local
solution to a global in time solution, and finally we show the uniqueness of the solution in the
two cases above.

The next case, 1 ≤ p < N+2
N+1 , has been intensively studied in the whole space RN (see [2, 6,

10, 18]) as well as in bounded domains with Dirichlet boundary condition ([1, 11]).

Theorem I.2. Let a ∈ R, a 6= 0, µ0 ∈ Mb(Ω) and 1 ≤ p < N+2
N+1 . Then the problem

[(V HJ) + (D)] admits a unique weak solution.

The proof follows almost the same steps as in the previous theorem. Since ξ → |ξ|p is a locally
Lipschitz function for p ≥ 1, the uniqueness result holds. Furthermore the local existence of a
solution is obtained thanks to the Banach fixed point Theorem.

We continue the study in the sub-quadratic case and we give some sufficient conditions on the
initial data in order to obtain the existence of weak solutions for the problem [(V HJ) + (D)].
We denote by

qc =
N(p− 1)

2− p
the critical exponent (which appear also in ([6], p. 343), ([10], p. 2013) and ([11], p. 189) and
we notice that

qc ≥ 1 ⇐⇒ p ≥ N + 2
N + 1

.

We have the following result:

Theorem I.3. Let a ∈ R, a 6= 0 and N+2
N+1 ≤ p < 2. If µ0 ∈ Lq(Ω), where q > qc, then the

problem [(V HJ) + (D)] admits a weak solution u ∈ C([0, T ];Lq(Ω)) ∩ Lp(0, T ;W 1,pq
0 (Ω)) for

all T > 0. Moreover this solution is unique in the space above.

The case a < 0, requires less restrictive hypothesis on the initial data µ0, in order to obtain
the global existence of a solution for problem [(V HJ) + (D)].

Theorem I.4. Let a < 0, N+2
N+1 ≤ p < 2 and µ0 ∈ L1(Ω) such that µ0 ≥ 0. Then there

exists at least one function u ∈ C([0,+∞);L1(Ω)) which is a weak solution of the problem
[(V HJ) + (D)].

The next theorem is a non-existence result when p ≥ N+2
N+1 and for initial data in the space

Mb(Ω) of bounded Radon measures on Ω. We mention that in [10] we can find an analogous
result in the whole space RN .

Theorem I.5. Let a < 0, p ≥ N+2
N+1 , T > 0, x0 ∈ Ω and M > 0 any positive constant. Then,

the problem [(V HJ) + (D)] has no weak solution for the initial data µ0 = Mδx0 .

Finally we deal with the super-quadratic case p ≥ 2. From Theorem 7.10 in [17] we know
that, if µ0 ∈ C1

0 (Ω) then the problem [(V HJ) + (D)] has a unique maximal in time, classical
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solution u ∈ C0,1([0, T ∗)× Ω) ∩ C1,2(QT ∗) where T ∗ ∈ (0,+∞] is the maximal time existence
for the solution u. Moreover if T ∗ < ∞, then:

lim
t↗T ∗

sup
x∈Ω

(|u(t, x)|+ |∇u(t, x)|) = ∞. (2.3)

As a consequence of the last observation, we notice that u can stay uniformly bounded but
does not exist globally in time while:

lim
t↗T ∗

sup
x∈Ω

|∇u(t, x)| = +∞.

In this case it is said that gradient blow-up occurs.
If a > 0, p > 2 and µ0 ∈ C1

0 (Ω), in [24], P. Souplet has proved that gradient blow-up occurs for
problems of type [(V HJ)+(D)], under growth conditions on µ0. Notice that this phenomenon
does not occur for the Cauchy problem on RN .
In the sequel we prove that for a viscous Hamilton-Jacobi equation with absorption we can
have a global existence.

Theorem I.6. Let p ≥ 2 and a < 0. If the initial data µ0 ∈ C1
0 (Ω) and µ0 ≥ 0, then the

maximal in time solution u of problem [(V HJ) + (D)] is a global one.

The last theorem extends Theorem I.6 to less regular initial data. As in [6] we introduce the
space:

L1
+,approx = {µ0 ∈ L1

+(Ω)| ∃(un
0 )n, un

0 ∈ C1
0 (Ω); 0 ≤ un

0 ↗ µ0}.

We have the following result:

Theorem I.7. Let p ≥ 2 and a < 0. For any µ0 ∈ L1
+,approx the problem [(V HJ) + (D)] has

at least one global weak solution u such that, for all T > 0:
u ∈ C([0, T );L1(Ω)) ∩ Lp(0, T ;W 1,p

0 (Ω)),
∂u

∂t
−∆u = a|∇u|p in D′(QT ),

u(0) = µ0 in Ω.

(2.4)

II. Cauchy-Neumann problem for viscous Hamilton-Jacobi equation. As in the pre-
vious chapter, we give some existence, uniqueness and regularity results of the solutions of
problem [(V HJ) + (N)] depending on the initial data µ0, the exponent p and the sign of the
real parameter a.
Let us briefly summarize the main results of Chapter II:

(i) When a ∈ R, a 6= 0, 0 < p < N+2
N+1 , and µ0 is a bounded Radon measure, using some

fixed point theorems, we show that the problem [(V HJ) + (N)] admits at least one
weak solution, moreover if 1 ≤ p < N+2

N+1 then this solution is unique. On the other
hand if N+2

N+1 ≤ p < 2 we obtain the existence and uniqueness results as long as the

initial data µ0 is in the Lebesgue space Lq(Ω), q > qc = N(p−1)
2−p .

(ii) When a < 0 and N+2
N+1 ≤ p < 2 we show that the problem [(V HJ) + (N)] admits at

least one weak solution for all µ0 ∈ L1(Ω), µ0 ≥ 0.
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(iii) Finally in the case a ∈ R, a 6= 0, p ≥ N+2
N+1 and µ0 = δx0 ( Dirac mass in x0 ∈ Ω ), we

show that [(V HJ) + (N)] has no weak solutions.

III. Long time behavior for the solutions of Cauchy-Dirichlet problem. The concept
of weak solution has been introduced in Chapter I. Depending on the parameter a and the
exponent p we can distinguish among the following results

Theorem III.1. Let a < 0, p ∈ (0, 1) and µ0 ∈ M+
b (Ω) a positive Radon measure. Then for

any weak solution u of problem [(V HJ) + (D)] there exists T ∗ > 0 such that

u(t, x) = 0 for any (t, x) ∈ (T ∗,+∞)× Ω. (2.1)

This property is called “extinction in finite time of the solution of problem [(V HJ) + (D)]”.

The proof relies on the results of [8, 9, 18] on the long time behavior of the solutions of the
Cauchy problem in the whole space RN . Indeed, when a < 0, after an extension by 0 on RN of
the initial data, the solution of the Cauchy problem is a super-solution for the Cauchy-Dirichlet
problem. Thus, from the extinction in finite time of the solutions of the Cauchy problem we
deduce the extinction in finite time of the solutions of the Cauchy-Dirichlet problem.
The following Theorem gives the long time behavior for the solutions of problem [(V HJ)+(D)]
as a < 0 and p ≥ 1.

Theorem III.2. Let a < 0, p ≥ 1 and µ0 ∈ L1(Ω), µ0 ≥ 0. Then any weak solution u of
problem [(V HJ) + (D)] converges uniformly to 0 as t →∞.

This result is a consequence of the fact that the solution et∆µ0 of the heat equation with initial
data µ0, is a super-solution of the problem [(V HJ)+(D)]. Moreover, from the classical results
of the heat equation with homogeneous Dirichlet boundary condition (see for example Lemma
3, p. 25 in [23]) we know that:

‖et∆µ0‖∞ ≤ C(1 + t−
N
2 )e−λt‖µ0‖1, for all t ∈ (0,+∞),

where λ is the first eigenvalue of the Laplacien in Ω with Dirichlet boundary condition. We
deduce that, the weak solution u of problem [(V HJ) + (D)] satisfies:

‖u(t)‖∞ ≤ C(1 + t−
N
2 )e−λt‖µ0‖1, for all t ∈ (0,+∞). (2.2)

Which gives the decreasing rate of the solution u. In particular, u converges uniformly to 0 as
t →∞. Thus, the proof of Theorem III.2 is achieved. �

We continue the study on the long time behavior with the case a > 0, p ∈ [1, 2).

Theorem III.3. Let a ∈ R, a 6= 0, p ∈ (1, 2) and µ0 ∈ C0(Ω). Then the global solution u of
problem [(V HJ) + (D)] converges to 0, uniformly in Ω, as t →∞.

The proof of Theorem III.3 relies on the one hand on the LaSalle Invariance Principle and
on the other hand on the convergence of the trajectories to the equilibrium points when
there exists a strictly Liapunov function for the dynamical system generated by the solutions
of [(V HJ) + (D)]. Moreover this result can be extended to initial data less regular as in
Theorems I.2 and I.3.
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IV. Long time behavior for the solutions of Cauchy-Neumann problem. In the last
chapter we reconsider the problem [(V HJ) + (N)] with Ω a bounded and convex open set,
and we give some existence and uniqueness results of the solutions when the initial data is a
continuous function in Ω. Then we study the large time behavior of the solutions according
to the exponent p. These results rely on some remarkable estimates for the gradient of the
solutions of problem [(V HJ) + (N)], obtained by using a Bernstein technique. Finally we
consider the following initial boundary value problem:

∂u

∂t
−∆u + |∇u|p = 0 in Ω× (0,+∞);

∂u

∂ν
= 0 on (0,+∞)× ∂Ω;

u(0) = +∞ in D;
u(0) = 0 in Ω \D;

(2.1)

where p ∈ (1,+∞), Ω and D are two open sets with smooth boundary such that D ⊂ D ⊂ Ω
and Ω is convex. This problem is related to the large deviation theory for some diffusion
process.
Before stating the main results we need to introduce the following notation. Let u be a function
in C(Q∞). For any t ≥ 0 denote by:

M(t) = max
x∈Ω

u(t, x) (2.2)

and
m(t) = min

x∈Ω
u(t, x), (2.3)

Theorem IV.1. Consider a ∈ R, a 6= 0, p > 0 and µ0 ∈ C(Ω), where Ω is a bounded and
convex open set. Then, the problem [(V HJ) + (N)] admits a unique solution:

u ∈ C(QT ) ∩ C1+δ/2,2+δ(Qτ,T )

for any T > 0 and τ ∈ (0, T ). Moreover, we have:

t → M(t) is a decreasing function in R, (2.4)

t → m(t) is a non-decreasing function in R, (2.5)

‖∇u(t)‖∞ ≤
(

1
2

)1/2

(M(s)−m(s))(t− s)−
1
2 for all t > s ≥ 0, (2.6)

and for p 6= 1

‖∇u(t)‖∞ ≤
(

max{p, 2}
ap|1− p|

)1/p

(M(s)−m(s))1/p(t− s)−1/p for all t > s ≥ 0. (2.7)

For the proof we shall use the Bernstein technique. This method can be found in [10, 11, 18]
and [22], where similar estimates to (2.6) and (2.7) are obtained for the Cauchy problem in
RN .
In the next part we shall analyze the large time behavior of the solutions of [(V HJ) + (N)]
as a < 0, p > 1 and the initial data µ0 is a continuous and positive function. Thus, we find
an universal bound for the gradient of the solution, which will be very useful in the proof of
Theorem IV.4.
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Theorem IV.2. Let Ω be a bounded and convex open set, a < 0 and p > 1. Let µ0 ∈ C+(Ω)
and u the unique solution of problem [(V HJ) + (N)] given by Theorem IV.1. Then u satisfies
the following estimations:

‖∇u(p−1)/p(t)‖∞ ≤ C(p, Ω)‖u0‖(p−1)/p
1 t−(p(N+1)−N)/2p, (2.8)

and

‖∇u(p−1)/p(t)‖∞ ≤ |a|−1/p (p− 1)(p−1)/p

p
t−1/p. (2.9)

The following result gives the asymptotical behavior of solutions of problem [(V HJ) + (N)]
depending on exponent p.

Theorem IV.3. Consider a ∈ R, a 6= 0, p > 0 and Ω a bounded and convex domain. Let
µ0 ∈ C(Ω) and denote by u the solution of problem [(V HJ)+(N)] corresponding to µ0. Then:

i) If p ∈ (0, 1), the extinction of the gradient of u in finite time occurs, in other words:
there exists T ∗ ∈ [0,+∞) and c ∈ R such that:

u(t, x) ≡ c for all t ≥ T ∗ and x ∈ Ω,

ii) If p ∈ [1,+∞), then u(t, ·) converges uniformly on Ω to a constant, as t →∞.

The proof of Theorem IV.3 follows the same ideas as in [9]. In this paper, the authors inves-
tigate the large time behavior for the Cauchy problem in the whole space RN and for initial
data periodic functions. We mention that the key arguments of the proof are the estimates
(2.6) and (2.7) above, moreover the results can be extended to less irregular initial data as in
Chapter II.
Finally we study the problem (2.1) whose origin comes from the large deviation theory. We
recall that the same problem with Dirichlet boundary condition has been already analyzed in
[11] for p > 1 and a < 0. It is suitable to introduce first the following definition:

Definition IV.1. A weak solution of problem (2.1) is a positive function u ∈ C1,2(Qτ,T ) which
satisfies for all 0 < τ < T < ∞:{

ut −∆u + |∇u|p = 0 in Qτ,T ,
∂u

∂ν
= 0 on Γτ,T ,

(2.10)

and the initial condition:

lim
t↘0

u(t, ·) = 0 uniformly on any compact subset of Ω \D (2.11)

lim
t↘0

u(t, ·) = +∞ uniformly on any compact subset of D. (2.12)

Theorem IV.4. Suppose that p ∈ (1, 2). Let Ω, D be two open domains of RN with smooth
boundary such that Ω is convex and D ⊂ Ω. Then the problem (2.1) admits a unique solution
in the sense of Definition IV.1.

The existence proof uses some properties of order preserving semigroups, which are developed
in [11]. The convexity of Ω plays an essential role, more precisely for the proof we shall need
the gradient estimations obtained in Theorem IV.2.
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